Scattering amplitude

In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.[1] At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction[2]

where is the position vector; ; is the incoming plane wave with the wavenumber k along the z axis; is the outgoing spherical wave; θ is the scattering angle (angle between the incident and scattered direction); and is the scattering amplitude. The dimension of the scattering amplitude is length. The scattering amplitude is a probability amplitude; the differential cross-section as a function of scattering angle is given as its modulus squared,

The asymptotic form of the wave function in arbitrary external field takes the form[2]

where is the direction of incidient particles and is the direction of scattered particles.

  1. ^ Quantum Mechanics: Concepts and Applications Archived 2010-11-10 at the Wayback Machine By Nouredine Zettili, 2nd edition, page 623. ISBN 978-0-470-02679-3 Paperback 688 pages January 2009
  2. ^ a b Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search