Silver oxide battery

Silver oxide battery
Silver oxide cells
Specific energy130 Wh/kg[1]
Energy density500 Wh/L[1]
Specific powerHigh
Charge/discharge efficiencyN/A
Energy/consumer-priceLow
Time durabilityHigh
Cycle durabilityN/A
Nominal cell voltage1.55V
Several sizes of button and coin cells, some of which are silver oxide

A silver oxide battery (IEC code: S) is a primary cell using silver oxide as the cathode material and zinc for the anode. These cells maintain a nearly constant nominal voltage during discharge until fully depleted.[2] They are available in small sizes as button cells, where the amount of silver used is minimal and not a prohibitively expensive contributor to the overall product cost.

Silver oxide primary batteries account for 30% of all primary battery sales in Japan (64 out of 212 million in February 2020).[3]

Large silver oxide batteries were used on early ICBM's and satellites because of their high energy-to-weight ratio. For example the Corona reconnaissance satellites used them, as did the Agena-D rocket upper stage.[4] Later, they were also used in the Apollo Lunar Module and lunar rover.[5][6]

  1. ^ a b "ProCell Silver Oxide battery chemistry". Duracell. Archived from the original on 2009-12-20. Retrieved 2009-04-21.
  2. ^ "Silver Oxide Batteries". muRata. Retrieved 25 November 2020.
  3. ^ "Monthly Battery Sales Statistics". Baj.or.jp. MoETI. May 2020. Archived from the original on 2010-12-06. Retrieved 2020-08-07.
  4. ^ "Feasibility Study, Final Report, Geodetic Orbital Photographic Satellite System, Volume 2" (PDF). NRO. June 1966. Archived from the original (PDF) on 2012-03-16. Retrieved 2011-01-28.
  5. ^ Clemens, Kevin (2019-07-05). "The Batteries That Powered the Lunar Module". designnews.com. Retrieved 2021-02-02.
  6. ^ Lyons, Pete; "10 Best Ahead-of-Their-Time Machines", Car and Driver, Jan. 1988, p.78

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search