Simple linear regression

Okun's law in macroeconomics is an example of the simple linear regression. Here the dependent variable (GDP growth) is presumed to be in a linear relationship with the changes in the unemployment rate.

In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable.[1][2][3][4][5] That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.

It is common to make the additional stipulation that the ordinary least squares (OLS) method should be used: the accuracy of each predicted value is measured by its squared residual (vertical distance between the point of the data set and the fitted line), and the goal is to make the sum of these squared deviations as small as possible. In this case, the slope of the fitted line is equal to the correlation between y and x corrected by the ratio of standard deviations of these variables. The intercept of the fitted line is such that the line passes through the center of mass (x, y) of the data points.

  1. ^ Seltman, Howard J. (2008-09-08). Experimental Design and Analysis (PDF). p. 227.
  2. ^ "Statistical Sampling and Regression: Simple Linear Regression". Columbia University. Retrieved 2016-10-17. When one independent variable is used in a regression, it is called a simple regression;(...)
  3. ^ Lane, David M. Introduction to Statistics (PDF). p. 462.
  4. ^ Zou KH; Tuncali K; Silverman SG (2003). "Correlation and simple linear regression". Radiology. 227 (3): 617–22. doi:10.1148/radiol.2273011499. ISSN 0033-8419. OCLC 110941167. PMID 12773666.
  5. ^ Altman, Naomi; Krzywinski, Martin (2015). "Simple linear regression". Nature Methods. 12 (11): 999–1000. doi:10.1038/nmeth.3627. ISSN 1548-7091. OCLC 5912005539. PMID 26824102. S2CID 261269711.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search