Sobolev mapping

In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations, including the theory of harmonic maps.[1][2][3]

  1. ^ Hélein, Frédéric; Wood, John C. (2008). "Harmonic maps". Handbook of Global Analysis: 417–491. doi:10.1016/B978-044452833-9.50009-7. ISBN 978-0-444-52833-9.
  2. ^ Eells, J.; Lemaire, L. (March 1978). "A Report on Harmonic Maps". Bulletin of the London Mathematical Society. 10 (1): 1–68. doi:10.1112/blms/10.1.1.
  3. ^ Eells, J.; Lemaire, L. (September 1988). "Another Report on Harmonic Maps". Bulletin of the London Mathematical Society. 20 (5): 385–524. doi:10.1112/blms/20.5.385.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search