Soil moisture

Soil moisture is the water content of the soil. It can be expressed in terms of volume or weight. Soil moisture measurement can be based on in situ probes (e.g., capacitance probes, neutron probes) or remote sensing methods.[1][2]

Water that enters a field is removed from a field by runoff, drainage, evaporation or transpiration.[3] Runoff is the water that flows on the surface to the edge of the field; drainage is the water that flows through the soil downward or toward the edge of the field underground; evaporative water loss from a field is that part of the water that evaporates into the atmosphere directly from the field's surface; transpiration is the loss of water from the field by its evaporation from the plant itself.

Water affects soil formation, structure, stability and erosion but is of primary concern with respect to plant growth.[4] Water is essential to plants for four reasons:

  1. It constitutes 80–95% of the plant's protoplasm.
  2. It is essential for photosynthesis.
  3. It is the solvent in which nutrients are carried to, into and throughout the plant.
  4. It provides the turgidity by which the plant keeps itself in proper position.[5]

In addition, water alters the soil profile by dissolving and re-depositing mineral and organic solutes and colloids, often at lower levels, a process called leaching. In a loam soil, solids constitute half the volume, gas one-quarter of the volume, and water one-quarter of the volume of which only half will be available to most plants, with a strong variation according to matric potential.[6]

Water moves in soil under the influence of gravity, osmosis and capillarity.[7] When water enters the soil, it displaces air from interconnected macropores by buoyancy, and breaks aggregates into which air is entrapped, a process called slaking.[8] The rate at which a soil can absorb water depends on the soil and its other conditions. As a plant grows, its roots remove water from the largest pores (macropores) first. Soon the larger pores hold only air, and the remaining water is found only in the intermediate- and smallest-sized pores (micropores). The water in the smallest pores is so strongly held to particle surfaces that plant roots cannot pull it away. Consequently, not all soil water is available to plants, with a strong dependence on texture.[9] When saturated, the soil may lose nutrients as the water drains.[10] Water moves in a draining field under the influence of pressure where the soil is locally saturated and by capillarity pull to drier parts of the soil.[11] Most plant water needs are supplied from the suction caused by evaporation from plant leaves (transpiration) and a lower fraction is supplied by suction created by osmotic pressure differences between the plant interior and the soil solution.[12][13] Plant roots must seek out water and grow preferentially in moister soil microsites,[14] but some parts of the root system are also able to remoisten dry parts of the soil.[15] Insufficient water will damage the yield of a crop.[16] Most of the available water is used in transpiration to pull nutrients into the plant.[17]

Soil water is also important for climate modeling and numerical weather prediction. The Global Climate Observing System specified soil water as one of the 50 Essential Climate Variables (ECVs).[18] Soil water can be measured in situ with soil moisture sensors or can be estimated at various scales and resolution: from local or wifi measures via sensors in the soil to satellite imagery that combines data capture and hydrological models. Each method exhibits pros and cons, and hence, the integration of different techniques may decrease the drawbacks of a single given method.[19]

  1. ^ Zhang, Lijie; Zeng, Yijian; Zhuang, Ruodan; Szabó, Brigitta; Manfreda, Salvatore; Han, Qianqian; Su, Zhongbo (2021-12-02). "In Situ Observation-Constrained Global Surface Soil Moisture Using Random Forest Model". Remote Sensing. 13 (23): 4893. Bibcode:2021RemS...13.4893Z. doi:10.3390/rs13234893. ISSN 2072-4292.
  2. ^ Albergel, Clement; de Rosnay, Patricia; Gruhier, Claire; Muñoz-Sabater, Joaquin; Hasenauer, Stefan; Isaksen, Lars; Kerr, Yann; Wagner, Wolfgang (March 2012). "Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations". Remote Sensing of Environment. 118: 215–226. Bibcode:2012RSEnv.118..215A. doi:10.1016/j.rse.2011.11.017.
  3. ^ Wallace, James S.; Batchelor, Charles H. (1997). "Managing water resources for crop production". Philosophical Transactions of the Royal Society B: Biological Sciences. 352 (1356): 937–47. doi:10.1098/rstb.1997.0073. PMC 1691982. Retrieved 14 August 2022.
  4. ^ Veihmeyer, Frank J.; Hendrickson, Arthur H. (1927). "Soil-moisture conditions in relation to plant growth". Plant Physiology. 2 (1): 71–82. doi:10.1104/pp.2.1.71. PMC 439946. PMID 16652508.
  5. ^ Donahue, Miller & Shickluna 1977, p. 72.
  6. ^ Ratliff, Larry F.; Ritchie, Jerry T.; Cassel, D. Keith (1983). "Field-measured limits of soil water availability as related to laboratory-measured properties". Soil Science Society of America Journal. 47 (4): 770–75. Bibcode:1983SSASJ..47..770R. doi:10.2136/sssaj1983.03615995004700040032x. Retrieved 14 August 2022.
  7. ^ "Water movement in soils". Oklahoma State University, Department of Plant and Soil Sciences. Stillwater, Oklahoma. Retrieved 14 August 2022.
  8. ^ Le Bissonnais, Yves (2016). "Aggregate stability and assessment of soil crustability and erodibility. I. Theory and methodology". European Journal of Soil Science. 67 (1): 11–21. Bibcode:2016EuJSS..67...11L. doi:10.1111/ejss.4_12311. S2CID 247704630. Retrieved 14 August 2022.
  9. ^ Easton, Zachary M.; Bock, Emily (22 March 2016). "Soil and soil water relationships" (PDF). Virginia Tech. hdl:10919/75545. Retrieved 14 August 2022.
  10. ^ Sims, J. Thomas; Simard, Régis R.; Joern, Brad Christopher (1998). "Phosphorus loss in agricultural drainage: historical perspective and current research". Journal of Environmental Quality. 27 (2): 277–93. Bibcode:1998JEnvQ..27..277S. doi:10.2134/jeq1998.00472425002700020006x. Retrieved 14 August 2022.
  11. ^ Brooks, R.H.; Corey, Arthur T. (1964). Hydraulic properties of porous media (PDF). Fort Collins, Colorado: Colorado State University. Retrieved 14 August 2022.
  12. ^ McElrone, Andrew J.; Choat, Brendan; Gambetta, Greg A.; Brodersen, Craig R. "Water uptake and transport in vascular plants" (PDF). Retrieved 14 August 2022.
  13. ^ Steudle, Ernst (2000). "Water uptake by plant roots: an integration of views". Plant and Soil. 226 (1): 45–56. doi:10.1023/A:1026439226716. S2CID 3338727. Retrieved 14 August 2022.
  14. ^ Wilcox, Carolyn S.; Ferguson, Joseph W.; Fernandez, George C.J.; Nowak, Robert S. (2004). "Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite". Journal of Arid Environments. 56 (1): 129–48. Bibcode:2004JArEn..56..129W. doi:10.1016/S0140-1963(02)00324-5.
  15. ^ Hunter, Albert S.; Kelley, Omer J. (1946). "The extension of plant roots into dry soil". Plant Physiology. 21 (4): 445–51. doi:10.1104/pp.21.4.445. PMC 437296. PMID 16654059.
  16. ^ Zhang, Yongqiang; Kendy, Eloise; Qiang, Yu; Liu, Changming; Shen, Yanjun; Sun, Hongyong (2004). "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain". Agricultural Water Management. 64 (2): 107–22. Bibcode:2004AgWM...64..107Z. doi:10.1016/S0378-3774(03)00201-4. Retrieved 14 August 2022.
  17. ^ Oyewole, Olusegun Ayodeji; Inselsbacher, Erich; Näsholm, Torgny (2014). "Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil". New Phytologist. 201 (3): 1056–64. doi:10.1111/nph.12553. PMID 24134319.
  18. ^ "Essential Climate Variables". Global Climate Observing System. 2013. Retrieved 14 August 2022.
  19. ^ Brocca, Luca; Hasenauer, Stefan; Lacava, Teodosio; Moramarco, Tommaso; Wagner, Wolfgang; Dorigo, Wouter; Matgen, Patrick; Martínez-Fernández, José; Llorens, Pilar; Latron, Jérôme; Martin, Claude; Bittelli, Marco (2011). "Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe". Remote Sensing of Environment. 115 (12): 3390–3408. Bibcode:2011RSEnv.115.3390B. doi:10.1016/j.rse.2011.08.003. Retrieved 14 August 2022.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search