Sylvester's law of inertia

Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if is the symmetric matrix that defines the quadratic form, and is any invertible matrix such that is diagonal, then the number of negative elements in the diagonal of is always the same, for all such ; and the same goes for the number of positive elements.

This property is named after James Joseph Sylvester who published its proof in 1852.[1][2]

  1. ^ Sylvester, James Joseph (1852). "A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares" (PDF). Philosophical Magazine. 4th Series. 4 (23): 138–142. doi:10.1080/14786445208647087. Retrieved 2008-06-27.
  2. ^ Norman, C.W. (1986). Undergraduate algebra. Oxford University Press. pp. 360–361. ISBN 978-0-19-853248-4.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search