Synthetic biological circuit

The lac operon is a natural biological circuit on which many synthetic circuits are based. Top: Repressed, Bottom: Active.
1: RNA polymerase, 2: Repressor, 3: Promoter, 4: Operator, 5: Lactose, 6: lacZ, 7: lacY, 8: lacA.

Synthetic biological circuits are an application of synthetic biology where biological parts inside a cell are designed to perform logical functions mimicking those observed in electronic circuits. Typically, these circuits are categorized as either genetic circuits, RNA circuits, or protein circuits, depending on the types of biomolecule that interact to create the circuit's behavior. The applications of all three types of circuit range from simply inducing production to adding a measurable element, like green fluorescent protein, to an existing natural biological circuit, to implementing completely new systems of many parts.[1]

A ribosome is a biological machine.

The goal of synthetic biology is to generate an array of tunable and characterized parts, or modules, with which any desirable synthetic biological circuit can be easily designed and implemented.[2] These circuits can serve as a method to modify cellular functions, create cellular responses to environmental conditions, or influence cellular development. By implementing rational, controllable logic elements in cellular systems, researchers can use living systems as engineered "biological machines" to perform a vast range of useful functions.[1]

  1. ^ a b Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ (June 2004). "Programmable cells: interfacing natural and engineered gene networks". Proceedings of the National Academy of Sciences of the United States of America. 101 (22): 8414–8419. Bibcode:2004PNAS..101.8414K. doi:10.1073/pnas.0402940101. PMC 420408. PMID 15159530.
  2. ^ "Synthetic Biology: FAQ". SyntheticBiology.org. Archived from the original on 12 December 2002. Retrieved 21 December 2011.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search