Tensor (intrinsic definition)

In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their properties can be derived from their definitions, as linear maps or more generally; and the rules for manipulations of tensors arise as an extension of linear algebra to multilinear algebra.

In differential geometry, an intrinsic[definition needed] geometric statement may be described by a tensor field on a manifold, and then doesn't need to make reference to coordinates at all. The same is true in general relativity, of tensor fields describing a physical property. The component-free approach is also used extensively in abstract algebra and homological algebra, where tensors arise naturally.

Note: This article assumes an understanding of the tensor product of vector spaces without chosen bases. An overview of the subject can be found in the main tensor article.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search