Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle[Note 1]—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential. It is difficult to weaponize the uranium-233 that is bred in the reactor. Plutonium-239 is produced at much lower levels and can be consumed in thorium reactors.
The feasibility of using thorium was demonstrated at a large scale, at the scale of a commercial power plant, through the design, construction and successful operation of the thorium-based Light Water Breeder Reactor (LWBR) core installed at the Shippingport Atomic Power Station.[1] The reactor of this power plant was designed to accommodate different cores. The thorium core was rated at 60 MW(e), produced power from 1977 through 1982 (producing over 2.1 billion kilowatt hours of electricity) and converted enough thorium-232 into uranium-233 to achieve a 1.014 breeding ratio.
After studying the feasibility of using thorium, nuclear scientists Ralph W. Moir and Edward Teller suggested that thorium nuclear research should be restarted after a three-decade shutdown and that a small prototype plant should be built.[2][3][4] Between 1999 and 2022, the number of operational thorium reactors in the world has risen from zero[5] to a handful of research reactors,[6] to commercial plans for producing full-scale thorium-based reactors for use as power plants on a national scale.[7][8][9][6][10]
Advocates believe thorium is key to developing a new generation of cleaner, safer nuclear power.[9] In 2011, a group of scientists at the Georgia Institute of Technology assessed thorium-based power as "a 1000+ year solution or a quality low-carbon bridge to truly sustainable energy sources solving a huge portion of mankind's negative environmental impact."[11] However, development of thorium power has significant start-up costs. Development of breeder reactors in general (including thorium reactors, which are breeders by nature) will increase proliferation concerns.
Cite error: There are <ref group=Note>
tags on this page, but the references will not show without a {{reflist|group=Note}}
template (see the help page).
The original seed-blanket reactor was the Shippingport (Pennsylvania) reactor design ... Changes in the original Shippingport design resulted in the Light Water Breeder Reactor (LWBR) utilizing U-233 as the fissile fuel in the "seed" regions, and thorium in the "blanket" regions.
WNA090822
was invoked but never defined (see the help page).
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search