Tick-borne disease

Tick-borne disease
SpecialtyInfectious disease

Tick-borne diseases, which afflict humans and other animals, are caused by infectious agents transmitted by tick bites.[1] They are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa.[2] The economic impact of tick-borne diseases is considered to be substantial in humans,[3] and tick-borne diseases are estimated to affect ~80 % of cattle worldwide.[4] Most of these pathogens require passage through vertebrate hosts as part of their life cycle. Tick-borne infections in humans, farm animals, and companion animals are primarily associated with wildlife animal reservoirs.[5] Many tick-borne infections in humans involve a complex cycle between wildlife animal reservoirs and tick vectors.[5] The survival and transmission of these tick-borne viruses are closely linked to their interactions with tick vectors and host cells. These viruses are classified into different families, including Asfarviridae, Reoviridae, Rhabdoviridae, Orthomyxoviridae, Bunyaviridae, and Flaviviridae.[6]

The occurrence of ticks and tick-borne illnesses in humans is increasing.[7] Tick populations are spreading into new areas, in part due to climate change.[8][9] Tick populations are also affected by changes in the populations of their hosts (e.g. deer, cattle, mice, lizards) and those hosts' predators (e.g. foxes). Diversity and availability of hosts and predators can be affected by deforestation and habitat fragmentation.[8]

Because individual ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment.[2] As the incidence of tick-borne illnesses increases and the geographic areas in which they are found expand, health workers increasingly must be able to distinguish the diverse, and often overlapping, clinical presentations of these diseases.[10]

As of 2020 18 tick-borne pathogens have been identified in the United States according to the Centers for Disease Control[10] and at least 27 are known globally.[8][11][12] New tick-borne diseases have been discovered in the 21st century, due in part to the use of molecular assays and next-generation sequencing.[13]

  1. ^ Wenner M (11 June 2021). "Let's Do a Tick Check - These pervasive bloodsuckers can give you more than just Lyme disease. Here's how to protect yourself. (Interactive)". The New York Times. Retrieved 19 June 2021.
  2. ^ a b Kumar, Manish; Sharma, Aniket; Grover, Prashant (13 February 2019). "Triple Tick Attack". Cureus. 11 (2): e4064. doi:10.7759/cureus.4064. PMC 6464285. PMID 31016091.
  3. ^ Mac, Stephen; da Silva, Sara R.; Sander, Beate (4 January 2019). "The economic burden of Lyme disease and the cost-effectiveness of Lyme disease interventions: A scoping review". PLOS ONE. 14 (1): e0210280. Bibcode:2019PLoSO..1410280M. doi:10.1371/journal.pone.0210280. ISSN 1932-6203. PMC 6319811. PMID 30608986.
  4. ^ Rochlin, Ilia; Toledo, Alvaro (1 June 2020). "Emerging tick-borne pathogens of public health importance: a mini-review". Journal of Medical Microbiology. 69 (6): 781–791. doi:10.1099/jmm.0.001206. ISSN 0022-2615. PMC 7451033. PMID 32478654.
  5. ^ a b Baneth, Gad (1 August 2014). "Tick-borne infections of animals and humans: a common ground". International Journal for Parasitology. 44 (9): 591–596. doi:10.1016/j.ijpara.2014.03.011. PMID 24846527.
  6. ^ Brites-Neto, José; Duarte, Keila Maria Roncato; Martins, Thiago Fernandes (12 March 2015). "Tick-borne infections in human and animal population worldwide". Veterinary World. 8 (3): 301–315. doi:10.14202/vetworld.2015.301-315. PMC 4774835. PMID 27047089.
  7. ^ "Lyme and Other Tickborne Diseases Increasing". Centers for Disease Control. 21 October 2021. Retrieved 4 March 2022.
  8. ^ a b c Chrobak, Ula (3 February 2022). "Lyme and other tick-borne diseases are on the rise. But why?". Knowable Magazine. doi:10.1146/knowable-020222-1. Retrieved 4 March 2022.
  9. ^ Gilbert, Lucy (7 January 2021). "The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk". Annual Review of Entomology. 66 (1): 373–388. doi:10.1146/annurev-ento-052720-094533. ISSN 0066-4170. PMID 33417823. S2CID 231300522.
  10. ^ a b Tick-Borne Disease Working Group. 2020 Report to Congress (PDF). Washington, D.C.: U.S. Department of Health and Human Services. 2020. Retrieved 4 March 2022.
  11. ^ Paddock, Christopher D.; Lane, Robert S.; Staples, J. Erin; Labruna, Marcelo B. (21 September 2016). Changing paradigms for tick-borne diseases in the Americas. National Academies Press (US). Retrieved 4 March 2022.
  12. ^ Zhao, Guo-Ping; Wang, Yi-Xing; Fan, Zheng-Wei; Ji, Yang; Liu, Ming-jin; Zhang, Wen-Hui; Li, Xin-Lou; Zhou, Shi-Xia; Li, Hao; Liang, Song; Liu, Wei; Yang, Yang; Fang, Li-Qun (17 February 2021). "Mapping ticks and tick-borne pathogens in China". Nature Communications. 12 (1): 1075. Bibcode:2021NatCo..12.1075Z. doi:10.1038/s41467-021-21375-1. ISSN 2041-1723. PMC 7889899. PMID 33597544. Retrieved 4 March 2022.
  13. ^ Tokarz, Rafal; Lipkin, W. Ian (1 July 2021). "Discovery and Surveillance of Tick-Borne Pathogens". Journal of Medical Entomology. 58 (4): 1525–1535. doi:10.1093/jme/tjaa269. ISSN 0022-2585. PMC 8285023. PMID 33313662. Retrieved 4 March 2022.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search