Total internal reflection fluorescence microscope

A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed.

TIRFM is an imaging modality which uses the excitation of fluorescent cells in a thin optical specimen section that is supported on a glass slide. The technique is based on the principle that when excitation light is totally internally reflected in a transparent solid coverglass at its interface with a liquid medium, an electromagnetic field, also known as an evanescent wave, is generated at the solid-liquid interface with the same frequency as the excitation light.[1] The intensity of the evanescent wave exponentially decays with distance from the surface of the solid so that only fluorescent molecules within a few hundred nanometers of the solid are efficiently excited. Two-dimensional images of the fluorescence can then be obtained, although there are also mechanisms in which three-dimensional information on the location of vesicles or structures in cells can be obtained.[2]

  1. ^ Fish, Kenneth N. (October 2009). "Total Internal Reflection Fluorescence (TIRF) Microscopy". Current Protocols in Cytometry. 0 12: Unit12.18. doi:10.1002/0471142956.cy1218s50. ISSN 1934-9297. PMC 4540339. PMID 19816922.
  2. ^ "Total Internal Reflection Fluorescence (TIRF) Microscopy". Nikon’s MicroscopyU. Retrieved 2021-12-06.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search