Transcription activator-like effector

TAL effector (PDB: 3ugm​), spacefill by David Goodsell. Stripes are repeat domains.
Identifiers
OrganismXanthomonas oryzae
SymbolpthXo1
RefSeq (Prot)WP_041182630.1
UniProtB2SU53
Other data
ChromosomeGenomic: 1.65 - 1.65 Mb
Search for
StructuresSwiss-model
DomainsInterPro

TAL (transcription activator-like) effectors (often referred to as TALEs, but not to be confused with the three amino acid loop extension homeobox class of proteins) are proteins secreted by some β- and γ-proteobacteria.[1] Most of these are Xanthomonads. Plant pathogenic Xanthomonas bacteria are especially known for TALEs, produced via their type III secretion system. These proteins can bind promoter sequences in the host plant and activate the expression of plant genes that aid bacterial infection. The TALE domain responsible for binding to DNA is known to have 1.5 to 33.5 short sequences that are repeated multiple times (tandem repeats).[2] Each of these repeats was found to be specific for a certain base pair of the DNA.[2] These repeats also have repeat variable residues (RVD) that can detect specific DNA base pairs.[2] They recognize plant DNA sequences through a central repeat domain consisting of a variable number of ~34 amino acid repeats. There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence. These proteins are interesting to researchers both for their role in disease of important crop species and the relative ease of retargeting them to bind new DNA sequences. Similar proteins can be found in the pathogenic bacterium Ralstonia solanacearum[3][4][1] and Burkholderia rhizoxinica,[5][1] as well as yet unidentified marine microorganisms.[6] The term TALE-likes is used to refer to the putative protein family encompassing the TALEs and these related proteins.

  1. ^ a b c Schornack S, Moscou MJ, Ward ER, Horvath DM (2013-08-04). "Engineering plant disease resistance based on TAL effectors". Annual Review of Phytopathology. 51 (1). Annual Reviews: 383–406. doi:10.1146/annurev-phyto-082712-102255. PMID 23725472.
  2. ^ a b c Deng, Dong; Yan, Chuangye; Pan, Xiaojing; Mahfouz, Magdy; Wang, Jiawei; Zhu, Jian-Kang; Shi, Yigong; Yan, Nieng (2012-02-10). "Structural basis for sequence-specific recognition of DNA by TAL effectors". Science. 335 (6069): 720–723. Bibcode:2012Sci...335..720D. doi:10.1126/science.1215670. ISSN 1095-9203. PMC 3586824. PMID 22223738.
  3. ^ Heuer H, Yin YN, Xue QY, Smalla K, Guo JH (July 2007). "Repeat domain diversity of avrBs3-like genes in Ralstonia solanacearum strains and association with host preferences in the field". Applied and Environmental Microbiology. 73 (13): 4379–84. Bibcode:2007ApEnM..73.4379H. doi:10.1128/AEM.00367-07. PMC 1932761. PMID 17468277.
  4. ^ Li L, Atef A, Piatek A, Ali Z, Piatek M, Aouida M, et al. (July 2013). "Characterization and DNA-binding specificities of Ralstonia TAL-like effectors". Molecular Plant. 6 (4): 1318–30. doi:10.1093/mp/sst006. PMC 3716395. PMID 23300258.
  5. ^ de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (June 2014). "Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain". Nucleic Acids Research. 42 (11): 7436–49. doi:10.1093/nar/gku329. PMC 4066763. PMID 24792163.
  6. ^ de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (November 2015). "DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats". Nucleic Acids Research. 43 (20): 10065–80. doi:10.1093/nar/gkv1053. PMC 4787788. PMID 26481363.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search