Logical connectives | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||||||||||||||||||||||||
Related concepts | ||||||||||||||||||||||||||
Applications | ||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables.[1] In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid.
A truth table has one column for each input variable (for example, A and B), and one final column showing all of the possible results of the logical operation that the table represents (for example, A XOR B). Each row of the truth table contains one possible configuration of the input variables (for instance, A=true, B=false), and the result of the operation for those values.
A proposition's truth table is a graphical representation of its truth function. The truth function can be more useful for mathematical purposes, although the same information is encoded in both.
Ludwig Wittgenstein is generally credited with inventing and popularizing the truth table in his Tractatus Logico-Philosophicus, which was completed in 1918 and published in 1921.[2] Such a system was also independently proposed in 1921 by Emil Leon Post.[3]
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search