Unramified morphism

In algebraic geometry, an unramified morphism is a morphism of schemes such that (a) it is locally of finite presentation and (b) for each and , we have that

  1. The residue field is a separable algebraic extension of .
  2. where and are maximal ideals of the local rings.

A flat unramified morphism is called an étale morphism. Less strongly, if satisfies the conditions when restricted to sufficiently small neighborhoods of and , then is said to be unramified near .

Some authors prefer to use weaker conditions, in which case they call a morphism satisfying the above a G-unramified morphism.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search