User:Anarchyte/sandboxTRAPPIST

TRAPPIST-1
TRAPPIST-1 lies in the northwestern part of the constellation Aquarius, close to the ecliptic.
TRAPPIST-1 is within the red circle in the constellation Aquarius.
Observation data
Epoch J2000      Equinox J2000
Constellation Aquarius
Right ascension 23h 06m 29.368s[1]
Declination −05° 02′ 29.04″[1]
Apparent magnitude (V) 18.798±0.082[2]
Characteristics
Evolutionary stage Main sequence
Spectral type M8V[3]
Apparent magnitude (R) 16.466±0.065[2]
Apparent magnitude (I) 14.024±0.115[2]
Apparent magnitude (J) 11.354±0.022[4]
Apparent magnitude (H) 10.718±0.021[4]
Apparent magnitude (K) 10.296±0.023[4]
V−R color index 2.332
R−I color index 2.442
J−H color index 0.636
J−K color index 1.058
Astrometry
Proper motion (μ) RA: 930.788[1] mas/yr
Dec.: −479.038[1] mas/yr
Parallax (π)80.2123±0.0716 mas[1]
Distance40.66 ± 0.04 ly
(12.47 ± 0.01 pc)
Details
Mass0.0898±0.0023[5] M
Radius0.1192±0.0013[5] R
Luminosity (bolometric)0.000553±0.000018[5] L
Surface gravity (log g)5.2396+0.0056
−0.0073
[a][5] cgs
Temperature2,566±26[5] K
Metallicity [Fe/H]0.04±0.08[6] dex
Rotation3.295±0.003 days[7]
Rotational velocity (v sin i)6[8] km/s
Age7.6±2.2[9] Gyr
Other designations
2MUDC 12171,[10] 2MASS J23062928–0502285, EPIC 246199087,[11] K2-112,[12] SPECULOOS-1, an internal name of the star used by the SPECULOOS project, as this star was its first discovery,[13] and TRAPPIST-1a.[14]
Database references
SIMBADdata
Exoplanet Archivedata

TRAPPIST-1 is a cold dwarf star[b] noted for its seven known exoplanets. It lies in the constellation Aquarius about 40.66 light-years away from Earth, with a surface temperature of about 2,566 kelvins (2,290 degrees Celsius; 4,160 degrees Fahrenheit). Its radius is slightly larger than Jupiter and it has a mass of about 9% of the Sun. It is estimated to be 7.6 billion years old, making it older than the Solar System. The discovery of the star was first published in 2000.

Observations in 2016 from the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) at La Silla Observatory in Chile and numerous other telescopes led to the discovery of two terrestrial planets in orbit around TRAPPIST-1. In 2017, further analysis of the original observations identified five more planets. It takes the planets between about 1.5 and 19 days to orbit around the star on circular orbits. The planets are likely tidally locked to TRAPPIST-1, such that one side of each planet always faces the star, leading to permanent day on one side and permanent night on the other. Their masses are comparable to that of Earth and they all lie in the same plane; from Earth they seem to move past the disk of the star.

As many as four of the planets – designated d, e, f and g – orbit at distances where temperatures are suitable for the existence of liquid water, and are thus potentially hospitable to life. There is no evidence of an atmosphere on any of the planets and it is unclear whether radiation emissions from TRAPPIST-1 would allow for one. The planets have low densities; they may consist of large amounts of volatile materials. Due to the possibility of several planets being habitable, the system has drawn interest from researchers and has appeared in popular culture.

  1. ^ a b c d e Brown 2021, Gaia EDR3 record for this source at VizieR.
  2. ^ a b c Costa et al. 2006, p. 1240.
  3. ^ a b Costa et al. 2006, p. 1234.
  4. ^ a b c Cutri et al. 2003, p. II/246.
  5. ^ a b c d e Agol et al. 2021, p. 1.
  6. ^ Delrez et al. 2018, pp. 3577–3597.
  7. ^ Vida et al. 2017, p. 7.
  8. ^ Barnes et al. 2014, pp. 3094–3113.
  9. ^ Burgasser & Mamajek 2017.
  10. ^ Martínez-Rodríguez et al. 2019, p. 3.
  11. ^ Turbet et al. 2020, p. 2.
  12. ^ Meadows & Schmidt 2020, p. 727.
  13. ^ Delrez et al. 2022, p. 2.
  14. ^ Harbach et al. 2021, p. 3.
  15. ^ Gargaud et al. 2011, Red Dwarf.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search