Wetting

Close-up of a drop of water (almost spherical) on blue fabric, with a shadow under it
Water bead on a fabric that has been made non-wetting by chemical treatment.

Wetting is the ability of a liquid to displace gas to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together.[1] These interactions occur in the presence of either a gaseous phase or another liquid phase not miscible with the wetting liquid. The degree of wetting (wettability) is determined by a force balance between adhesive and cohesive forces. There are two types of wetting: non-reactive wetting and reactive wetting.[2][3]

Wetting is important in the bonding or adherence of two materials.[4] The wetting power of a liquid, and surface forces which control wetting, are also responsible for related effects, including capillary effects. Surfactants can be used to increase the wetting power of liquids such as water.

Wetting has gained increasing attention in nanotechnology and nanoscience research, following the development of nanomaterials over the past two decades (i.e., graphene,[5] carbon nanotube, boron nitride nanomesh[6]).

  1. ^ Carroll, Gregory T.; Turro, Nicholas J.; Mammana, Angela; Koberstein, Jeffrey T. (2017). "Photochemical Immobilization of Polymers on a Surface: Controlling Film Thickness and Wettability". Photochemistry and Photobiology. 93 (5): 1165–1169. doi:10.1111/php.12751. ISSN 0031-8655. PMID 28295380.
  2. ^ Dezellus, O.; Eustathopoulos, N. (2010). "Fundamental issues of reactive wetting by liquid metals" (PDF). Journal of Materials Science. 45 (16): 4256–4264. Bibcode:2010JMatS..45.4256D. doi:10.1007/s10853-009-4128-x. S2CID 4512480.
  3. ^ Hu, Han; Ji, Hai-Feng; Sun, Ying (2013). "The effect of oxygen vacancies on water wettability of a ZnO surface". Physical Chemistry Chemical Physics. 15 (39): 16557–65. Bibcode:2013PCCP...1516557H. doi:10.1039/C3CP51848E. PMID 23949186. S2CID 205850095.
  4. ^ Amziane, Sofiane; Collet, Florence (2017-03-05). Bio-aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM. Springer. ISBN 9789402410310.
  5. ^ Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y.; Ajayan, P. M.; Koratkar, N. A. (2012). "Wetting transparency of graphene" (PDF). Nature Materials. 11 (3): 217–22. Bibcode:2012NatMa..11..217R. doi:10.1038/nmat3228. PMID 22266468. Archived from the original (PDF) on 2017-11-15.
  6. ^ Mertens, Stijn F. L.; Hemmi, Adrian; Muff, Stefan; Gröning, Oliver; De Feyter, Steven; Osterwalder, Jürg; Greber, Thomas (2016). "Switching stiction and adhesion of a liquid on a solid" (PDF). Nature. 534 (7609): 676–679. Bibcode:2016Natur.534..676M. doi:10.1038/nature18275. PMID 27357755. S2CID 205249367. Archived from the original (PDF) on 2019-04-11.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search