Mioglobina

Mioglobina

Modelo mostrando la conformación helicoidal (hélices alfa) de la cadena polipeptídica en la mioglobina.
Estructuras disponibles
PDB

Buscar ortólogos: PDBe, RCSB

 Lista de códigos PDB
3RGK
Identificadores
Símbolos MB (HGNC: 6915) PVALB
Identificadores
externos
Locus Cr. 22 q11.2-ter
Ortólogos
Especies
Humano Ratón
Entrez
4151 17189
Ensembl
Véase HS Véase MM
UniProt
P02144 P04247
RefSeq
(ARNm)
NM_005368 NM_001164047
RefSeq
(proteína) NCBI
NP_005359 NP_001157519
Ubicación (UCSC)
Cr. 22:
36 – 36.03 Mb
Cr. 15:
77.02 – 77.05 Mb
PubMed (Búsqueda)
[1]


[2]

La mioglobina es una heteroproteína muscular, estructuralmente y funcionalmente muy parecida a la hemoglobina.[1][2]​ Es una proteína relativamente pequeña constituida por una cadena polipeptídica de 153 residuos aminoácidos y por un grupo hemo que contiene un átomo de hierro. La función de la mioglobina es almacenar oxígeno. Menos comúnmente se la ha denominado también miohemoglobina o hemoglobina muscular.

Las mayores concentraciones de mioglobina se encuentran en el músculo esquelético y en el músculo cardíaco, donde se requieren grandes cantidades de O2 para satisfacer la demanda energética de las contracciones.

La mioglobina fue la primera proteína cuya estructura tridimensional se determinó experimentalmente. En 1958, John Kendrew y sus colegas determinaron la estructura de la mioglobina empleando cristalografía de rayos X de alta resolución. Por este descubrimiento, John Kendrew obtuvo en 1962 el Premio Nobel de Química, compartido con Max Perutz

Es una proteína extremadamente compacta y globular, en la que la mayoría de los aminoácidos hidrófobos se encuentran en el interior y muchos de los residuos polares están expuestos en la superficie. Alrededor del 78% de la estructura secundaria tiene una conformación de hélice alfa; de hecho, existen ocho segmentos de hélice alfa en la mioglobina, designados con las letras A a H.

Dentro de una cavidad hidrófoba de la proteína se encuentra el grupo prostético hemo. Esta unidad no polipeptídica se encuentra unida de manera no covalente a la mioglobina y es esencial para la actividad biológica de unión de O2 de la proteína.

La mioglobina y el citocromo B562 forman parte de las proteínas hémicas, que intervienen en el transporte y fijación de oxígeno, el transporte de electrones y la fotosíntesis. Estas proteínas poseen como grupo prostético un tetrapirrol cíclico o grupo hem, o hemo, formado por cuatro anillos de pirrol planares enlazados por puentes de alfa metileno. En el centro de este anillo existe un hierro ferroso (Fe+2). En el caso del citocromo la oxidación y reducción del átomo de hierro son esenciales para la actividad biológica. Por el contrario, la actividad biológica de mioglobina y hemoglobina se pierde si se oxida el Fe+2.

En la mioglobina no oxigenada, el hierro del hemo se encuentra aproximadamente a 0,03 nm fuera del plano del grupo en dirección al residuo de histidina HisF8. La oxigenación de la mioglobina produce el movimiento del átomo de hierro, ya que el oxígeno ocupa la sexta posición de coordinación del hierro y desplaza el residuo HisF8 0,01nm fuera del plano del hemo.

Este movimiento de HisF8 produce el cambio conformacional de algunas regiones de la proteína, lo que favorece la liberación de oxígeno en las células deficientes de oxígeno, donde este se requiere para la generación de energía metabólica dependiente de ATP.

  1. Torres-Sánchez, Horacio; Torres-Sánchez, Horacio (March 2017). «The interdisciplinarity of lightning». Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 41 (159): 174-186. ISSN 0370-3908. doi:10.18257/raccefyn.475. Consultado el 16 de mayo de 2018. 
  2. Campoverde Jiménez, Erasmo Javier (2016). «Análisis bioquímico de orina en paciente deportista con hemoglobinuria inducida por ejercicio extenuante». Español. Pag. XI. Consultado el 16 de mayo de 2018. 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search