Elektrodinamika

Faradayev pokus koji dokazuje elektromagnetsku indukciju: baterija (desno) stvara električnu struju koja prolazi kroz malu električnu zavojnicu (A), stvarajući magnetsko polje. Kada zavojnica miruje ne inducira se nikakav napon. Ali ako se mala zavojnica kreće unutar velike zavojnice (B), magnetski tok unutar velike zavojnice se mijenja, stvarajući (inducirajući) električnu struju koja se može opaziti na galvanometru (G).[1]
Prikaz električnog polja koje okružuje pozitivni (crveno) i negativni (plavo) električni naboj.
Prikaz električnog polja između dva točkasta električna naboja.
Pločasti električni kondenzator.
Polarizirani dielektrični materijal kod električnog kondenzatora.
Magnetsko polje je prostor oko prirodnih i umjetnih magneta i unutar njih u kojem djeluju magnetske sile.
Magnetsko polje prstenastog magneta.
Njemački 6 MeV betatron (1942.).
Način rada betatrona.
Prvi veliki sinkrotron bio je Cosmotron u Brookhaven National Laboratory (BNL), Upton, New York, SAD (1952., energija protona 3 GeV).
Shema sinkrotrona Soleil u Parizu.

Elektrodinamika je grana fizike koja obuhvaća pojave vezane uz gibanje električnih naboja, svojstva električnih struja, električnih vodiča i nabijenih subatomskih čestica te elektromagnetsko zračenje, uz prisutnost električnoga i magnetskoga polja. U početku razvoja znanosti o elektricitetu i magnetizmu smatralo se da električne i magnetske sile trenutačno djeluju na daljinu, te da je za to djelovanje nebitno kako se tijela gibaju. Na toj pretpostavci izgrađena je matematička teorija, kojoj rezultati vrijede samo u elektrostatici. Pokusi M. Faradaya pokazali da postoji električno polje u prostoru među električnim nabojima, odnosno magnetsko polja među magnetskim polovima. Prema novom shvaćanju svaki naboj posvuda u prostoru trajno stvara polje u kojem se onda drugi naboji sa svojim poljem gibaju.

Matematički obrađena teorija Jamesa Clerka Maxwella (1864.) električne i magnetske pojave povezuje u jedinstven sustav. Do tada su bile razmatrane odvojeno i u usporedbi s gravitacijom. Druga je važna postavka da se utjecaji ne šire trenutno, to jest beskonačno brzo, već nekom konačnom brzinom svjetlosti c, koja je temeljna konstanta Maxwellove teorije, a kasnijim pokusima utvrđena je kao brzina svjetlosti u vakuumu. Te dopune ne mijenjaju Coulombov zakon, ali imaju bitan utjecaj na ispravno objašnjenje dinamičkih pojava. S Maxwellovim jednadžbama teorija elektromagnetizma postala je egzaktna znanost, jednako kao i mehanika nakon Newtonovih zakona. Pokusima potvrđena ispravnost postavki elektrodinamike imala je važnu ulogu u oblikovanju teorije relativnosti i, kasnije, opće kvantne relativističke teorije polja.[2]

  1. Poyser, Arthur William (1892), Magnetism and electricity: A manual for students in advanced classes. London and New York; Longmans, Green, & Co., p. 285, fig. 248. Retrieved 2009-08-06.
  2. elektrodinamika, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2019.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search