Fotosinteza

Shema fotosinteze u listu biljke. Proizvedeni ugljikohidrati pohranjuju se ili koriste u biljci.

Fotosinteza je biološki proces kojim stanični organizmi pretvaraju energiju svjetlosti u kemijsku energiju. Kemijska se energija pohranjuje u organskim spojevima koje organizmi poslije mogu iskorištavati za pokretanje drugih aktivnosti, metabolizirajući ih u procesu staničnoga disanja.

Izraz se obično odnosi na kisikovu fotosintezu, u kojoj je kisik jedan od produkata, a dio proizvedene kemijske energije pohranjuje se u molekulama ugljikohidrata kao što su šećeri, škrob, glikogen i celuloza. Oni se u inače energijski nepovoljnoj reakciji sintetiziraju od ugljikova dioksida i vode, prema ukupnoj pojednostavljenoj kemijskoj jednadžbi[1]

6 CO2ugljikov dioksid + 6 H2OvodaC6H12O6šećeri + 6O2kisik

Fotosintezu obavlja većina biljaka, alga i cijanobakterija pa ih se naziva fotoautotrofima. Fotosinteza je u velikoj mjeri odgovorna za proizvodnju i održavanje razine kisika u Zemljinoj atmosferi i pribavlja većinu energije bioloških procesa potrebne za život višestaničnih organizama.[2]

Neke bakterije imaju fotosintezu u kojoj je umjesto kisika produkt sumpor, koristeći bakterioklorofil za cijepanje sumporovodika kao donora elektrona umjesto vode. Arheje kao što je Halobacterium također imaju vrstu anoksigene fotosinteze bez fiksiranja ugljika asimilacijom, a one jednostavniji fotopigment retinal i njegove mikrobne rodopsinske derivate koriste za apsorbiranje zelene svjetlosti i pogon protonske pumpe za izravnu sintezu adenozin trifosfata (ATP). Takva fotosinteza mogla je biti najraniji oblik fotosinteze razvijen na Zemlji, koji seže sve do paleoarhaika, prethodeći fotosintezi u cijanobakterija.

List je primarno mjesto odvijanja fotosinteze u biljkama. Zelene je boje jer pigment klorofil reagira na plavi i crveni dio Sunčeva spektra, a zeleni uglavnom reflektira.

Iako se fotosinteza razlikuje u pojedinih vrsta, u osnovi su procesa uvijek bjelančevine koje se nazivaju reakcijski centri i koje sadrže fotosintetske pigmente ili kromofore koji apsorbiraju energiju kvanata svjetlosti. U biljkama se radi o klorofilu, derivatima porfirina koji apsorbiraju crveni i plavi dio spektra, a reflektiraju zelenu boju. Klorofil se nalazi u organelama koje se zovu kloroplasti, a kojih ima najviše u citoplazmi stanica lista, dok su u bakterijama ugrađeni u staničnu membranu. U tim reakcijama ovisnima o svjetlu dio energije odlazi na odvajanje elektrona iz pogodnih spojeva; u slučaju kada je to voda, stvara se plinoviti kisik. Vodik oslobođen cijepanjem vode koristi se u stvaranju dva spoja koji služe kao kratkoročne zalihe energije za kasnije pokretanje drugih reakcija: reducirani nikotinamid adenin dinukleotid fosfat (NADPH) i adenozin trifosfat (ATP).

U biljkama, algama i cijanobakterijama šećeri se sintetiziraju naknadnim nizom reakcija neovisnih o svjetlu koji se naziva Calvinov ciklus. U njemu se atmosferski ugljikov dioksid ugrađuje u već postojeće organske ugljikove spojeve kao što je ribuloza-1,5-bisfosfat (RuBP).[3] Upotrebom ATP-a i NADPH-a proizvedenih reakcijama ovisnima o svjetlu dobiveni se spojevi zatim reduciraju i uklanjaju kako bi se stvarali ugljikohidrati kao što je glukoza. Neke bakterije u istom cilju koriste mehanizme poput obrnutog Krebsovog ciklusa.

Prvi fotosintetski organizmi vjerojatno su evoluirali rano u evolucijskoj povijesti života i najvjerojatnije su kao izvore elektrona umjesto vode koristili donore elektrona poput vodika i sumporovodika.[4] Poslije su se pojavile cijanobakterije, a višak kisika koji su proizvodile pridonio je oksigenaciji Zemlje,[5] što je omogućilo evoluciju složenog višestaničnog života. Danas je prosječna stopa uhvata energije fotosintezom na globalnoj razini oko 130 teravata,[6][7][8] što je oko osam puta više od potrošnje energije ljudske civilizacije.[9] Fotosintetski organizmi uz to godišnje pretvaraju milijardu metričkih tona ugljika u biomasu.[10][11]

Fotosinteza je važna za klimatske procese jer uhvaća ugljikov dioksid iz zraka, a zatim veže ugljik u biljke, a potom i u tlo. Od početka 20. stoljeća udio ugljikova dioksida u atmosferi povećao se s 280 ppm na 412 ppm, što je povećanje od 280 milijarda tona.[1] Fotosintezom se svake godine veže više od 200 milijarda tona ugljika.[1] Procjenjuje se da samo žitarice vežu 3,8 milijarda metričkih tona ugljikova dioksida godišnje.[12]

  1. a b c Pogreška u citiranju: Nevažeća <ref> oznaka; nije zadan tekst za izvor HE
  2. Bryant DA, Frigaard NU. Studeni 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends in Microbiology. 14 (11): 488–496. doi:10.1016/j.tim.2006.09.001. PMID 16997562
  3. Reece J, Urry L, Cain M, Wasserman S, Minorsky P, Jackson R. 2011. Biology International izdanje. Pearson Education. Upper Saddle River, NJ. str. 235, 244. ISBN 978-0-321-73975-9. This initial incorporation of carbon into organic compounds is known as carbon fixation.
  4. Olson JM. Svibanj 2006. Photosynthesis in the Archean era. Photosynthesis Research. 88 (2): 109–117. doi:10.1007/s11120-006-9040-5. PMID 16453059
  5. Buick R. Kolovoz 2008. When did oxygenic photosynthesis evolve?. Philosophical Transactions of the Royal Society of London, Series B. 363 (1504): 2731–2743. doi:10.1098/rstb.2008.0041. PMC 2606769. PMID 18468984
  6. Nealson KH, Conrad PG. Prosinac 1999. Life: past, present and future. Philosophical Transactions of the Royal Society of London, Series B. 354 (1392): 1923–1939. doi:10.1098/rstb.1999.0532. PMC 1692713. PMID 10670014
  7. Whitmarsh J, Govindjee. 1999. The photosynthetic process. Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (ur.). Concepts in photobiology: photosynthesis and photomorphogenesis. Kluwer Academic Publishers. Boston. str. 11–51. ISBN 978-0-7923-5519-9. Inačica izvorne stranice arhivirana 14. kolovoza 2010. Pristupljeno 7. srpnja 2012.. 100×1015 grams of carbon/year fixed by photosynthetic organisms, which is equivalent to 4×1018 kJ/yr = 4×1021 J/yr of free energy stored as reduced carbon.
  8. Steger U, Achterberg W, Blok K, Bode H, Frenz W, Gather C, Hanekamp G, Imboden D, Jahnke M, Kost M, Kurz R, Nutzinger HG, Ziesemer T. 2005. Sustainable development and innovation in the energy sector. Springer. Berlin. str. 32. ISBN 978-3-540-23103-5. Inačica izvorne stranice arhivirana 2. rujna 2016. Pristupljeno 21. veljače 2016.. The average global rate of photosynthesis is 130 TW.
  9. World Consumption of Primary Energy by Energy Type and Selected Country Groups, 1980–2004. Energy Information Administration. 31. srpnja 2006. Inačica izvorne stranice (XLS) arhivirana 9. studenoga 2006. Pristupljeno 20. siječnja 2007.
  10. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Srpanj 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 281 (5374): 237–240. Bibcode:1998Sci...281..237F. doi:10.1126/science.281.5374.237. PMID 9657713. Inačica izvorne stranice arhivirana 25. rujna 2018. Pristupljeno 20. travnja 2018.
  11. Photosynthesis. McGraw-Hill Encyclopedia of Science & Technology. 13. McGraw-Hill. New York. 2007. ISBN 978-0-07-144143-8
  12. Frankelius P. srpnja–kolovoza 2020. A proposal to rethink agriculture in the climate calculations. Agronomy Journal. 112 (4): 3216–3221. Bibcode:2020AgrJ..112.3216F. doi:10.1002/agj2.20286

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search