Numero primo

La distribuzione dei numeri primi (linee blu) fino a 400

In matematica, un numero primo (in breve anche primo) è un numero intero positivo che abbia esattamente due divisori distinti. In modo equivalente si può definire come un numero naturale maggiore di 1 che sia divisibile solamente per 1 e per sé stesso; al contrario, un numero maggiore di 1 che abbia più di due divisori è detto composto. Ad esempio 2, 3 e 5 sono primi mentre 4 e 6 non lo sono perché sono divisibili rispettivamente anche per 2 e per 2 e 3. L'unico numero primo pari è 2, in quanto tutti gli altri numeri pari sono divisibili per 2.

La successione dei numeri primi comincia con 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139[1]

Quello di numero primo è uno dei concetti basilari della teoria dei numeri, la parte della matematica che studia i numeri interi: l'importanza sta nella possibilità di costruire con essi, attraverso la moltiplicazione, tutti gli altri numeri interi, nonché l'unicità di tale fattorizzazione. I primi sono inoltre infiniti e la loro distribuzione è tuttora oggetto di molte ricerche.

I numeri primi sono oggetto di studio fin dall'antichità: i primi risultati risalgono agli antichi Greci, e in particolare agli Elementi di Euclide, scritti attorno al 300 a.C. Ciononostante, numerose congetture che li riguardano non sono state ancora dimostrate; tra le più note vi sono l'ipotesi di Riemann, la congettura di Goldbach e quella dei primi gemelli, indimostrate a più di un secolo dalla loro formulazione.

Essi sono rilevanti anche in molti altri ambiti della matematica pura, come ad esempio l'algebra o la geometria; recentemente hanno assunto un'importanza cruciale anche nella matematica applicata, e in particolare nella crittografia.

  1. ^ (EN) The on-line encyclopedia of integer sequences, su oeis.org, The OEIS Foundation. URL consultato il 28 dicembre 2018 (archiviato il 29 gennaio 2018).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search