Bisphenol A

Bisphenol A
Names
Preferred IUPAC name
4,4′-(Propane-2,2-diyl)diphenol
Other names
  • BPA
  • Diphenylolpropane
  • p,p-Isopropylidenebisphenol
  • 2,2-Bis(4-hydroxyphenyl)propane
  • 2,2-Di(4-phenylol)propane
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.001.133 Edit this at Wikidata
EC Number
  • 201-245-8
KEGG
RTECS number
  • SL6300000
UNII
UN number 2430
  • InChI=1S/C15H16O2/c1-15(2,11-3-7-13(16)8-4-11)12-5-9-14(17)10-6-12/h3-10,16-17H,1-2H3 checkY
    Key: IISBACLAFKSPIT-UHFFFAOYSA-N checkY
  • InChI=1/C15H16O2/c1-15(2,11-3-7-13(16)8-4-11)12-5-9-14(17)10-6-12/h3-10,16-17H,1-2H3
    Key: IISBACLAFKSPIT-UHFFFAOYAI
  • Oc1ccc(cc1)C(c2ccc(O)cc2)(C)C
  • CC(C)(c1ccc(cc1)O)c2ccc(cc2)O
Properties
C15H16O2
Molar mass 228.291 g·mol−1
Appearance White solid
Odor Phenolic, medical
Density 1.217 g/cm3[1]
Melting point 155 °C (311 °F; 428 K)[5]
Boiling point 250–252 °C (482–486 °F; 523–525 K)[5] at 13 torrs (0.017 atm)
0.3 g/L (25 °C)[2]
log P 3.41[3]
Vapor pressure 5×10−6 Pa (25 °C)[4]
Hazards[6]
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H317, H318, H335, H360, H411[6]
P201, P202, P261, P273, P302+P352, P304+P340, P305+P351+P338, P308+P313, P333+P313, P363, P403+P233[6]
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Flash point 227 °C (441 °F; 500 K)[6]
510 °C (950 °F; 783 K)[6]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is soluble in most common organic solvents, but has very poor solubility in water.[2][7] BPA is produced on an industrial scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10 million tonnes.[8]

BPA's largest single application is as a co-monomer in the production of polycarbonates, which accounts for 65–70% of all BPA production.[9][10] The manufacturing of epoxy resins and vinyl ester resins account for 25–30% of BPA use.[9][10] The remaining 5% is used as a major component of several high-performance plastics, and as a minor additive in PVC, polyurethane, thermal paper, and several other materials. It is not a plasticizer,[11] although it is often wrongly labelled as such.

The health effects of BPA have been the subject of prolonged public and scientific debate.[12][13][14] BPA is a xenoestrogen, exhibiting hormone-like properties that mimic the effects of estrogen in the body.[15] Although the effect is very weak,[16] the pervasiveness of BPA-containing materials raises concerns, as exposure is effectively lifelong. Many BPA-containing materials are non-obvious but commonly encountered,[17] and include coatings for the inside of food cans,[18] clothing designs,[19] shop receipts,[20] and dental fillings.[21] BPA has been investigated by public health agencies in many countries, as well as by the World Health Organization.[12] While normal exposure is below the level currently associated with risk, several jurisdictions have taken steps to reduce exposure on a precautionary basis, in particular by banning BPA from baby bottles. There is some evidence that BPA exposure in infants has decreased as a result of this.[22] BPA-free plastics have also been introduced, which are manufactured using alternative bisphenols such as bisphenol S and bisphenol F, but there is also controversy around whether these are actually safer.[23][24][25]

  1. ^ Lim CF, Tanski JM (3 August 2007). "Structural Analysis of Bisphenol-A and its Methylene, Sulfur, and Oxygen Bridged Bisphenol Analogs". Journal of Chemical Crystallography. 37 (9): 587–595. doi:10.1007/s10870-007-9207-8. S2CID 97284173.
  2. ^ a b Shareef A, Angove MJ, Wells JD, Johnson BB (11 May 2006). "Aqueous Solubilities of Estrone, 17β-Estradiol, 17α-Ethynylestradiol, and Bisphenol A". Journal of Chemical & Engineering Data. 51 (3): 879–881. doi:10.1021/je050318c.
  3. ^ Robinson BJ, Hui JP, Soo EC, Hellou J (2009). "Estrogenic Compounds in Seawater and Sediment from Halifax Harbour, Nova Scotia, Canada". Environmental Toxicology and Chemistry. 28 (1): 18–25. doi:10.1897/08-203.1. PMID 18702564. S2CID 13528747.
  4. ^ "Chemical Fact Sheet – Cas #80057 CASRN 80-05-7". speclab.com. 1 April 2012. Archived from the original on 12 February 2012. Retrieved 14 June 2012.
  5. ^ a b Mitrofanova SE, Bakirova IN, Zenitova LA, Galimzyanova AR, Nefed'ev ES (September 2009). "Polyurethane varnish materials based on diphenylolpropane". Russian Journal of Applied Chemistry. 82 (9): 1630–1635. doi:10.1134/S1070427209090225. S2CID 98036316.
  6. ^ a b c d e Sigma-Aldrich Co., Bisphenol A.
  7. ^ Cite error: The named reference Fiege was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference production was invoked but never defined (see the help page).
  9. ^ a b Cite error: The named reference EU2008 was invoked but never defined (see the help page).
  10. ^ a b Cite error: The named reference Tom2021 was invoked but never defined (see the help page).
  11. ^ Cadogan DF, Howick CJ (2000). "Plasticizers". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a20_439. ISBN 3527306730.
  12. ^ a b Cite error: The named reference WHO was invoked but never defined (see the help page).
  13. ^ Cite error: The named reference German2011 was invoked but never defined (see the help page).
  14. ^ Cite error: The named reference GLP was invoked but never defined (see the help page).
  15. ^ Egan M (2013). "Sarah A. Vogel. Is It Safe? BPA and the Struggle to Define the Safety of Chemicals". Isis. 105 (1). Berkeley: University of California Press: 254. doi:10.1086/676809. ISSN 0021-1753.
  16. ^ Cite error: The named reference Xenochemicals was invoked but never defined (see the help page).
  17. ^ Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, et al. (October 2012). "A review of dietary and non-dietary exposure to bisphenol-A". Food and Chemical Toxicology. 50 (10): 3725–3740. doi:10.1016/j.fct.2012.07.059. PMID 22889897.
  18. ^ Noonan GO, Ackerman LK, Begley TH (July 2011). "Concentration of bisphenol A in highly consumed canned foods on the U.S. market". Journal of Agricultural and Food Chemistry. 59 (13): 7178–7185. doi:10.1021/jf201076f. PMID 21598963.
  19. ^ Xue J, Liu W, Kannan K (May 2017). "Bisphenols, Benzophenones, and Bisphenol A Diglycidyl Ethers in Textiles and Infant Clothing". Environmental Science & Technology. 51 (9): 5279–5286. Bibcode:2017EnST...51.5279X. doi:10.1021/acs.est.7b00701. PMID 28368574.
  20. ^ Cite error: The named reference paper1 was invoked but never defined (see the help page).
  21. ^ Ahovuo-Saloranta A, Forss H, Walsh T, Nordblad A, Mäkelä M, Worthington HV (July 2017). "Pit and fissure sealants for preventing dental decay in permanent teeth". The Cochrane Database of Systematic Reviews. 2017 (7): CD001830. doi:10.1002/14651858.CD001830.pub5. PMC 6483295. PMID 28759120.
  22. ^ Cite error: The named reference auto was invoked but never defined (see the help page).
  23. ^ Thoene M, Dzika E, Gonkowski S, Wojtkiewicz J (February 2020). "Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review". Nutrients. 12 (2): 532. doi:10.3390/nu12020532. PMC 7071457. PMID 32092919.
  24. ^ Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M (7 June 2016). "Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review". Environmental Science & Technology. 50 (11): 5438–5453. Bibcode:2016EnST...50.5438C. doi:10.1021/acs.est.5b05387. PMID 27143250.
  25. ^ Eladak S, Grisin T, Moison D, Guerquin MJ, N'Tumba-Byn T, Pozzi-Gaudin S, Benachi A, Livera G, Rouiller-Fabre V, Habert R (2015). "A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound". Fertility and Sterility. 103 (1): 11–21. doi:10.1016/j.fertnstert.2014.11.005. PMID 25475787.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search