Cuboctahedron

Cuboctahedron

(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 14, E = 24, V = 12 (χ = 2)
Faces by sides 8{3}+6{4}
Conway notation aC
aaT
Schläfli symbols r{4,3} or
rr{3,3} or
t1{4,3} or t0,2{3,3}
Wythoff symbol 2 | 3 4
3 3 | 2
Coxeter diagram or
or
Symmetry group Oh, B3, [4,3], (*432), order 48
Td, [3,3], (*332), order 24
Rotation group O, [4,3]+, (432), order 24
Dihedral angle
References U07, C19, W11
Properties Semiregular convex quasiregular

Colored faces

3.4.3.4
(Vertex figure)

Rhombic dodecahedron
(dual polyhedron)

Net

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive.[1] It is radially equilateral.

Its dual polyhedron is the rhombic dodecahedron.

The cuboctahedron was probably known to Plato: Heron's Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares.[2]

  1. ^ Coxeter 1973, pp. 18–19, §2.3 Quasi-regular polyhedra.
  2. ^ Heath, Thomas L. (1931), "A manual of Greek mathematics", Nature, 128 (3235), Clarendon: 739–740, Bibcode:1931Natur.128..739T, doi:10.1038/128739a0, S2CID 3994109

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search