Supernova nucleosynthesis

Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.

In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after compressional heating, the fuel for the subsequent burning stage. In this context, the word "burning" refers to nuclear fusion and not a chemical reaction.

During hydrostatic burning these fuels synthesize overwhelmingly the alpha nuclides (A = 2Z), nuclei composed of integer numbers of helium-4 nuclei. Initially, two helium-4 nuclei fuse into a single beryllium-8 nucleus. The addition of another helium 4 nucleus to the beryllium yields carbon-12, followed by oxygen-16, neon-20 and so on, each time adding 2 protons and 2 neutrons to the growing nucleus. A rapid final explosive burning[1] is caused by the sudden temperature spike owing to passage of the radially moving shock wave that was launched by the gravitational collapse of the core. W. D. Arnett and his Rice University colleagues[2][1] demonstrated that the final shock burning would synthesize the non-alpha-nucleus isotopes more effectively than hydrostatic burning was able to do,[3][4] suggesting that the expected shock-wave nucleosynthesis is an essential component of supernova nucleosynthesis. Together, shock-wave nucleosynthesis and hydrostatic-burning processes create most of the isotopes of the elements carbon (Z = 6), oxygen (Z = 8), and elements with Z = 10 to 28 (from neon to nickel).[4][5] As a result of the ejection of the newly synthesized isotopes of the chemical elements by supernova explosions, their abundances steadily increased within interstellar gas. That increase became evident to astronomers from the initial abundances in newly born stars exceeding those in earlier-born stars.

Elements heavier than nickel are comparatively rare owing to the decline with atomic weight of their nuclear binding energies per nucleon, but they too are created in part within supernovae. Of greatest interest historically has been their synthesis by rapid capture of neutrons during the r-process, reflecting the common belief that supernova cores are likely to provide the necessary conditions. However, newer research has proposed a promising alternative (see the r-process below). The r-process isotopes are approximately 100,000 times less abundant than the primary chemical elements fused in supernova shells above. Furthermore, other nucleosynthesis processes in supernovae are thought to be responsible also for some nucleosynthesis of other heavy elements, notably, the proton capture process known as the rp-process, the slow capture of neutrons (s-process) in the helium-burning shells and in the carbon-burning shells of massive stars, and a photodisintegration process known as the γ-process (gamma-process). The latter synthesizes the lightest, most neutron-poor, isotopes of the elements heavier than iron from preexisting heavier isotopes.

  1. ^ a b Woosley, S.E.; Arnett, W.D.; Clayton, D.D. (1973). "The Explosive burning of oxygen and silicon". The Astrophysical Journal Supplement Series. 26: 231–312. Bibcode:1973ApJS...26..231W. doi:10.1086/190282. hdl:2152/43099. S2CID 222372611.
  2. ^ Cite error: The named reference Arnett1970 was invoked but never defined (see the help page).
  3. ^ See Figures 1, 3, and 4 in Arnett & Clayton (1970) and Fig. 2, p. 241 in Woosley, Arnett & Clayton 1973
  4. ^ a b Woosley, S.E.; Weaver, T.A. (1995). "The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis". The Astrophysical Journal Supplement Series. 101: 181. Bibcode:1995ApJS..101..181W. doi:10.1086/192237. Archived from the original on 2023-01-13. Retrieved 2019-07-11.
  5. ^ Thielemann, Fr.-K.; Nomoto, K.; Hashimoto, M.-A. (1996). "Core-Collapse Supernovae and Their Ejecta". The Astrophysical Journal. 460: 408. Bibcode:1996ApJ...460..408T. doi:10.1086/176980.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search