Antigenic escape

Antigenic escape, immune escape, immune evasion or escape mutation occurs when the immune system of a host, especially of a human being, is unable to respond to an infectious agent: the host's immune system is no longer able to recognize and eliminate a pathogen, such as a virus. This process can occur in a number of different ways of both a genetic and an environmental nature.[1] Such mechanisms include homologous recombination, and manipulation and resistance of the host's immune responses.[2]

Different antigens are able to escape through a variety of mechanisms. For example, the African trypanosome parasites are able to clear the host's antibodies, as well as resist lysis and inhibit parts of the innate immune response.[3] A bacterium, Bordetella pertussis, is able to escape the immune response by inhibiting neutrophils and macrophages from invading the infection site early on.[4] One cause of antigenic escape is that a pathogen's epitopes (the binding sites for immune cells) become too similar to a person's naturally occurring MHC-1 epitopes, resulting in the immune system becoming unable to distinguish the infection from self-cells.[citation needed]

Antigenic escape is not only crucial for the host's natural immune response, but also for the resistance against vaccinations. The problem of antigenic escape has greatly deterred the process of creating new vaccines. Because vaccines generally cover a small ratio of strains of one virus, the recombination of antigenic DNA that lead to diverse pathogens allows these invaders to resist even newly developed vaccinations.[5] Some antigens may even target pathways different from those the vaccine had originally intended to target.[4] Recent research on many vaccines, including the malaria vaccine, has focused on how to anticipate this diversity and create vaccinations that can cover a broader spectrum of antigenic variation.[5] On 12 May 2021, scientists reported to The United States Congress of the continuing threat of COVID-19 variants and COVID-19 escape mutations, such as the E484K virus mutation.[6]

  1. ^ Allen, Clint; Clavijo, Paul; Waes, Carter; Chen, Zhong (2015). "Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches". Cancers. 7 (4): 2397–414. doi:10.3390/cancers7040900. PMC 4695900. PMID 26690220.
  2. ^ Hanada, Katsuhiro; Yamaoda, Yoshio (2014). "Genetic Battle between Helicobacter pylori and humans. The Mechanism Underlying Homologous Recombination in Bacteria, Which Can Infect Human Cells". Microbes and Infection. 16 (10): 833–839. doi:10.1016/j.micinf.2014.08.001. PMID 25130723.
  3. ^ Cnops, Jennifer; Magez, Stefan; De Trez, Carl (2015). "Escape Mechanisms of African Trypanosomes: Why Trypanosomosis Is Keeping Us Awake". Parasitology. 142 (3): 417–427. doi:10.1017/s0031182014001838. PMID 25479093. S2CID 9365261.
  4. ^ a b Barnett, Timothy; Lim, Jin; Soderholm, Amelia; Rivera-Hernandes, Tania; West, Nicholas; Walker, Mark (2015). "Host-Pathogen Interaction During Bacterial Vaccination". Current Opinion in Immunology. 36: 1–7. doi:10.1016/j.coi.2015.04.002. PMID 25966310.
  5. ^ a b Barry, Alyssa; Arnott, Alicia (2014). "Strategies for Designing and Monitoring Malaria Vaccines Targeting Diverse Antigens". Frontiers in Immunology. 5: 359. doi:10.3389/fimmu.2014.00359. PMC 4112938. PMID 25120545.
  6. ^ Zimmer, Carl (12 May 2021). "Scientists warn U.S. lawmakers about the continued threat of coronavirus variants". The New York Times. Retrieved 13 May 2021.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search