Batesian mimicry

Plate from Bates 1861, illustrating Batesian mimicry between Dismorphia species (top row and third row) and various Ithomiini (Nymphalidae) (second and bottom rows). A non-Batesian species, Pseudopieris nehemia, is in the centre.

Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both. It is named after the English naturalist Henry Walter Bates, who worked on butterflies in the rainforests of Brazil.

Batesian mimicry is the most commonly known and widely studied of mimicry complexes, such that the word mimicry is often treated as synonymous with Batesian mimicry. There are many other forms however, some very similar in principle, others far separated. It is often contrasted with Müllerian mimicry, a form of mutually beneficial convergence between two or more harmful species. However, because the mimic may have a degree of protection itself, the distinction is not absolute. It can also be contrasted with functionally different forms of mimicry. Perhaps the sharpest contrast here is with aggressive mimicry where a predator or parasite mimics a harmless species, avoiding detection and improving its foraging success.

The imitating species is called the mimic, while the imitated species (protected by its toxicity, foul taste or other defenses) is known as the model. The predatory species mediating indirect interactions between the mimic and the model is variously known as the [signal] receiver, dupe or operator. By parasitising the honest warning signal of the model, the Batesian mimic gains an advantage, without having to go to the expense of arming itself. The model, on the other hand, is disadvantaged, along with the dupe. If impostors appear in high numbers, positive experiences with the mimic may result in the model being treated as harmless. At higher frequency there is also a stronger selective advantage for the predator to distinguish mimic from model. For this reason, mimics are usually less numerous than models, an instance of frequency-dependent selection. Some mimetic populations have evolved multiple forms (polymorphism), enabling them to mimic several different models and thereby to gain greater protection. Batesian mimicry is not always perfect. A variety of explanations have been proposed for this, including limitations in predators' cognition.

While visual signals have attracted most study, Batesian mimicry can employ deception of any of the senses; some moths mimic the ultrasound warning signals sent by unpalatable moths to bat predators, constituting auditory Batesian mimicry, while some weakly electric fish appear to mimic the electrolocation signals of strongly electric fish, probably constituting electrical mimicry.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search