Media naturalness theory

Media naturalness theory is also known as the psychobiological model. The theory was developed by Ned Kock and attempts to apply Darwinian evolutionary principles to suggest which types of computer-mediated communication will best fit innate human communication capabilities. Media naturalness theory argues that natural selection has resulted in face-to-face communication becoming the most effective way for two people to exchange information.

The theory has been applied to human communication outcomes in various contexts, such as: education,[1] knowledge transfer,[2] communication in virtual environments,[3] e-negotiation,[4] business process improvement,[5] trust and leadership in virtual teamwork,[6] online learning,[7][8] maintenance of distributed relationships,[9] performance in experimental tasks using various media,[10][11] and modular production.[12] Its development is also consistent with ideas from the field of evolutionary psychology.[13]

The media naturalness theory builds on the media richness theory's arguments that face-to-face interaction is the richest type of communication medium[14] by providing an evolutionary explanation for the face-to-face medium's degree of richness.[13] Media naturalness theory argues that since ancient hominins communicated primarily face-to-face, evolutionary pressures since that time have led to the development of a brain that is consequently adapted for that form of communication.[13][15] Kock points out that computer-mediated communication is far too recent a phenomenon to have had the time necessary to shape human cognition and language capabilities via natural selection.[13] In turn, Kock argues that using communication media that suppress key elements found in face-to-face communication, as many electronic communication media do, ends up posing cognitive obstacles to communication, and particularly in the case of complex tasks (e.g., business process redesign, new product development, online learning), because such tasks seem to require more intense communication over extended periods of time than simple tasks.[13]

  1. ^ Paretti M.C.; McNair L.D.; Holloway-Attaway L. (2007). "Teaching technical communication in an era of distributed work: A case study of collaboration between U.S. and Swedish students". Technical Communication Quarterly. 16 (3): 327–353. doi:10.1080/10572250701291087. S2CID 144999497.
  2. ^ Schwartz D.G. (2007). "Integrating knowledge transfer and computer-mediated communication: Categorizing barriers and possible responses". Knowledge Management Research & Practice. 5 (4): 249–260. doi:10.1057/palgrave.kmrp.8500153. S2CID 60553875.
  3. ^ Verhulsdonck, G. (2007). Issues of designing gestures into online interactions: Implications for communicating in virtual environments. In D. Novik & C. Spinuzzi (Eds.), Proceedings of the 25th annual ACM International Conference on Design of Communication (pp. 26–33). New York, NY: Association for Computing Machinery. Portal.acm.org (22 October 2007). Retrieved on 6 January 2012.
  4. ^ Citera M.; Beauregard R.; Mitsuya T. (2005). "An experimental study of credibility in e-negotiations". Psychology & Marketing. 22 (2): 163–179. doi:10.1002/mar.20053.
  5. ^ DeLuca, D. (2003). Business process improvement using asynchronous e-collaboration: Testing the compensatory adaptation model. Doctoral Dissertation. Philadelphia, PA: Temple University. Portal.acm.org. Retrieved on 6 January 2012.
  6. ^ DeRosa D.M.; Hantula D.A.; Kock N.; D'Arcy J.P. (2004). "Trust and leadership in virtual teamwork: A media naturalness perspective". Human Resource Management. 34 (2): 219–232. doi:10.1002/hrm.20016.
  7. ^ Hrastinski S (2008). "The potential of synchronous communication to enhance participation in online discussions: A case study of two e-learning courses". Information & Management. 45 (7): 499–506. doi:10.1016/j.im.2008.07.005.
  8. ^ Kock N.; Verville J.; Garza V. (2007). "Media naturalness and online learning: Findings supporting both the significant- and no-significant-difference perspectives". Decision Sciences Journal of Innovative Education. 5 (2): 333–356. doi:10.1111/j.1540-4609.2007.00144.x.
  9. ^ McKinney V.R., Whiteside M.M. (2006). "Maintaining distributed relationships". Communications of the ACM. 49 (3): 82–87. doi:10.1145/1118178.1118180. S2CID 11130498.
  10. ^ Kock N (2007). "Media naturalness and compensatory encoding: The burden of electronic media obstacles is on senders". Decision Support Systems. 44 (1): 175–187. doi:10.1016/j.dss.2007.03.011.
  11. ^ Simon A.F. (2006). "Computer-mediated communication: Task performance and satisfaction". Journal of Social Psychology. 146 (3): 349–379. doi:10.3200/socp.146.3.349-379. PMID 16783986. S2CID 21846869.
  12. ^ Kotabe M.; Parente R.; Murray J.Y. (2007). "Antecedents and outcomes of modular production in the Brazilian automobile industry: A grounded theory approach". Journal of International Business Studies. 38 (1): 84–107. doi:10.1057/palgrave.jibs.8400244. S2CID 167953949.
  13. ^ a b c d e Kock N (2004). "The psychobiological model: Towards a new theory of computer-mediated communication based on Darwinian evolution" (PDF). Organization Science. 15 (3): 327–348. doi:10.1287/orsc.1040.0071.
  14. ^ Daft, R. L. & Lengel, R. H. (1986).  Organizational Information Requirements, Media Richness and Structural Design.  Management Science, Vol. 32, No. 5, 554-571.
  15. ^ Kock N (2005). "Media richness or media naturalness? The evolution of our biological communication apparatus and its influence on our behavior toward e-communication tools". IEEE Transactions on Professional Communication. 48 (2): 117–130. CiteSeerX 10.1.1.134.6115. doi:10.1109/tpc.2005.849649. S2CID 7250836.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search