Protein engineering

Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature.[1] It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis.[2] It is also a product and services market, with an estimated value of $168 billion by 2017.[3]

There are two general strategies for protein engineering: rational protein design and directed evolution. These methods are not mutually exclusive; researchers will often apply both. In the future, more detailed knowledge of protein structure and function, and advances in high-throughput screening, may greatly expand the abilities of protein engineering. Eventually, even unnatural amino acids may be included, via newer methods, such as expanded genetic code, that allow encoding novel amino acids in genetic code.

  1. ^ "Protein engineering – Latest research and news | Nature". www.nature.com. Retrieved 2023-01-24.
  2. ^ Woodley, John M. (May 2022). "Integrating protein engineering into biocatalytic process scale-up". Trends in Chemistry. 4 (5): 371–373. doi:10.1016/j.trechm.2022.02.007. S2CID 247489691.
  3. ^ "Speeding Up the Protein Assembly Line". Genetic Engineering and Biotechnology News. 13 February 2015.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search