CRISPR

Cascade (CRISPR-associated complex for antiviral defense)
CRISPR Cascade protein (cyan) bound to CRISPR RNA (green) and phage DNA (red)[1]
Identifiers
OrganismEscherichia coli
SymbolCRISPR
Entrez947229
PDB4QYZ
RefSeq (Prot)NP_417241.1
UniProtP38036
Search for
StructuresSwiss-model
DomainsInterPro

CRISPR (/ˈkrɪspər/) (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea.[2] These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral (i.e. anti-phage) defense system of prokaryotes and provide a form of acquired immunity.[2][3][4][5] CRISPR is found in approximately 50% of sequenced bacterial genomes and nearly 90% of sequenced archaea.[6]

Diagram of the CRISPR prokaryotic antiviral defense mechanism[7]

Cas9 (or "CRISPR-associated protein 9") is an enzyme that uses CRISPR sequences as a guide to recognize and open up specific strands of DNA that are complementary to the CRISPR sequence. Cas9 enzymes together with CRISPR sequences form the basis of a technology known as CRISPR-Cas9 that can be used to edit genes within the organisms.[8][9] This editing process has a wide variety of applications including basic biological research, development of biotechnological products, and treatment of diseases.[10][11] The development of the CRISPR-Cas9 genome editing technique was recognized by the Nobel Prize in Chemistry in 2020 which was awarded to Emmanuelle Charpentier and Jennifer Doudna.[12][13]

  1. ^ PDB: 4QYZ​: Mulepati S, Héroux A, Bailey S (2014). "Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target". Science. 345 (6203): 1479–1484. Bibcode:2014Sci...345.1479M. doi:10.1126/science.1256996. PMC 4427192. PMID 25123481.
  2. ^ a b Barrangou R (2015). "The roles of CRISPR-Cas systems in adaptive immunity and beyond". Current Opinion in Immunology. 32: 36–41. doi:10.1016/j.coi.2014.12.008. PMID 25574773.
  3. ^ Redman M, King A, Watson C, King D (August 2016). "What is CRISPR/Cas9?". Archives of Disease in Childhood: Education and Practice Edition. 101 (4): 213–215. doi:10.1136/archdischild-2016-310459. PMC 4975809. PMID 27059283.
  4. ^ Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. (March 2007). "CRISPR provides acquired resistance against viruses in prokaryotes". Science. 315 (5819): 1709–1712. Bibcode:2007Sci...315.1709B. doi:10.1126/science.1138140. hdl:20.500.11794/38902. PMID 17379808. S2CID 3888761. (registration required)
  5. ^ Marraffini LA, Sontheimer EJ (December 2008). "CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA". Science. 322 (5909): 1843–1845. Bibcode:2008Sci...322.1843M. doi:10.1126/science.1165771. PMC 2695655. PMID 19095942.
  6. ^ Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E (March 2018). "The Biology of CRISPR-Cas: Backward and Forward". Cell. 172 (6): 1239–1259. doi:10.1016/j.cell.2017.11.032. hdl:21.11116/0000-0003-FC0D-4. PMID 29522745. S2CID 3777503.
  7. ^ Horvath P, Barrangou R (January 2010). "CRISPR/Cas, the immune system of bacteria and archaea". Science. 327 (5962): 167–170. Bibcode:2010Sci...327..167H. doi:10.1126/science.1179555. PMID 20056882. S2CID 17960960.
  8. ^ Bak RO, Gomez-Ospina N, Porteus MH (August 2018). "Gene Editing on Center Stage". Trends in Genetics. 34 (8): 600–611. doi:10.1016/j.tig.2018.05.004. PMID 29908711. S2CID 49269023.
  9. ^ Zhang F, Wen Y, Guo X (2014). "CRISPR/Cas9 for genome editing: progress, implications and challenges" (PDF). Human Molecular Genetics. 23 (R1): R40–6. doi:10.1093/hmg/ddu125. PMID 24651067.
  10. ^ CRISPR-CAS9, TALENS and ZFNS – the battle in gene editing https://www.ptglab.com/news/blog/crispr-cas9-talens-and-zfns-the-battle-in-gene-editing/ Archived 2021-05-25 at the Wayback Machine
  11. ^ Cite error: The named reference Hsu2014 was invoked but never defined (see the help page).
  12. ^ "Press release: The Nobel Prize in Chemistry 2020". Nobel Foundation. Archived from the original on 15 January 2021. Retrieved 7 October 2020.
  13. ^ Wu KJ, Peltier E (7 October 2020). "Nobel Prize in Chemistry Awarded to 2 Scientists for Work on Genome Editing – Emmanuelle Charpentier and Jennifer A. Doudna developed the Crispr tool, which can alter the DNA of animals, plants and microorganisms with high precision". The New York Times. Archived from the original on 8 October 2020. Retrieved 7 October 2020.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search