Limit of a sequence

diagram of a hexagon and pentagon circumscribed outside a circle
The sequence given by the perimeters of regular n-sided polygons that circumscribe the unit circle has a limit equal to the perimeter of the circle, i.e. . The corresponding sequence for inscribed polygons has the same limit.
1 0.841471
2 0.958851
...
10 0.998334
...
100 0.999983

As the positive integer becomes larger and larger, the value becomes arbitrarily close to . We say that "the limit of the sequence equals ."

In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ).[1] If such a limit exists, the sequence is called convergent.[2] A sequence that does not converge is said to be divergent.[3] The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.[1]

Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers.

  1. ^ a b Courant (1961), p. 29.
  2. ^ Weisstein, Eric W. "Convergent Sequence". mathworld.wolfram.com. Retrieved 2020-08-18.
  3. ^ Courant (1961), p. 39.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search