Antares (rocket)

Antares
Launch of an Antares 230
FunctionMedium expendable launch system
ManufacturerNorthrop Grumman (main)
Pivdenmash (sub)[1]
NPO Energomash (engines)
Country of originUnited States
Project costUS$472 million until 2012[2]
Cost per launchUS$80−85 million[3]
Size
Height
  • 110/120: 40.5 m (133 ft)[4][5]
  • 130: 41.9 m (137 ft)
  • 230/230+: 42.5 m (139 ft)[6]
Diameter3.9 m (13 ft)[7][6]
Mass
  • 110/120/130: 282,000–296,000 kg (622,000–653,000 lb)[5]
  • 230/230+: 298,000 kg (657,000 lb)[6]
Stages2 to 3[7]
Capacity
Payload to LEO
Mass8,000 kg (18,000 lb)[8]
Associated rockets
ComparableDelta II, Atlas III
Launch history
Status
  • 110: retired
  • 120: retired
  • 130: retired
  • 230: retired
  • 230+: retired
  • 300: planned
Launch sitesMARS, LP-0A
Total launches18 (110: 2, 120: 2, 130: 1, 230: 5, 230+: 8)
Success(es)17 (110: 2, 120: 2, 130: 0, 230: 5, 230+: 8)
Failure(s)1 (130: 1)
First flight
  • 110: April 21, 2013
  • 120: January 9, 2014
  • 130: October 28, 2014
  • 230: October 17, 2016
  • 230+: November 2, 2019
  • 300: June 2025 (planned)
Last flight
  • 110: September 18, 2013
  • 120: July 13, 2014
  • 130: October 28, 2014
  • 230: April 17, 2019
  • 230+: August 2, 2023
Type of passengers/cargoCygnus
First stage (Antares 100-series)
Empty mass18,700 kg (41,200 lb)[5]
Gross mass260,700 kg (574,700 lb)[5]
Powered by2 × NK-33[9]
Maximum thrust3,265 kN (734,000 lbf)[9]
Specific impulseSea level: 297 s (2.91 km/s)
Vacuum: 331 s (3.25 km/s)[5]
Burn time235 seconds[5]
PropellantRP-1/LOX[9]
First stage (Antares 200-series)
Empty mass20,600 kg (45,400 lb)[6]
Gross mass262,600 kg (578,900 lb)[6]
Powered by2 × RD-181[6]
Maximum thrust3,844 kN (864,000 lbf)[6]
Specific impulseSea level: 311.9 s (3.059 km/s)
Vacuum: 339.2 s (3.326 km/s)[6]
Burn time215 seconds[6]
PropellantRP-1/LOX
First stage (Antares 300-series)
Powered by7 × Firefly Aerospace Miranda[10]
PropellantRP-1/LOX
Second stage – Castor 30A/B/XL
Gross mass
  • 30A: 14,035 kg (30,942 lb)
  • 30B: 13,970 kg (30,800 lb)
  • 30XL: 26,300 kg (58,000 lb)[5]
Propellant mass
  • 30A: 12,815 kg (28,252 lb)
  • 30B: 12,887 kg (28,411 lb)[5]
  • 30XL: 24,200 kg (53,400 lb)[6]
Maximum thrust
  • 30A: 259 kN (58,200 lbf)
  • 30B: 293.4 kN (65,960 lbf)[9][5]
  • 30XL: 474 kN (107,000 lbf)[11]
Burn time
  • 30A: 136 seconds
  • 30B: 127 seconds
  • 30XL: 156 seconds[5][6]
PropellantTP-H8299/aluminium[12]

Antares (/ænˈtɑːrz/), known during early development as Taurus II, is an expendable launch system developed by Orbital Sciences Corporation (later part of Northrop Grumman) and the Pivdenne Design Bureau to launch the Cygnus spacecraft to the International Space Station as part of NASA's COTS and CRS programs. Able to launch payloads heavier than 8,000 kg (18,000 lb) into low Earth orbit, Antares is the largest rocket operated by Northrop Grumman. Antares launches from the Mid-Atlantic Regional Spaceport and made its inaugural flight on April 21, 2013.[13] Antares 100 was retired in 2014 and series 200 was retired in 2023 due to component unavailability. As of January 2024 Antares 300 is under development.

NASA awarded Orbital a Commercial Orbital Transportation Services (COTS) Space Act Agreement (SAA) in 2008 to demonstrate delivery of cargo to the International Space Station. Orbital (and later Northrop Grumman) used Antares to launch its Cygnus spacecraft for these missions. As of August 2023 it has only been used for Cygnus launches to the ISS, despite it being intended for commercial launches. Originally designated the Taurus II, Orbital Sciences renamed the vehicle Antares, after the star of the same name,[14] on December 12, 2011.

Out of 18 total launches, Antares has suffered one failure. During the fifth launch on October 28, 2014, the rocket failed catastrophically, and the vehicle and payload were destroyed.[15] The rocket's first-stage engines were identified as the cause for the failure. A different engine was chosen for subsequent launches, and the rocket had a successful return to flight on October 17, 2016.

The Antares has flown two major design iterations, the 100 series and 200 series. Both series have used a Castor 30XL as an upper stage but have differed on the first stage.[16] The 100 series used two Kerolox powered AJ26 engines in the first stage and launched successfully four times. The 100 series was retired following a launch failure in 2014.[17] The 200 series which first flew in 2016 also featured a Kerolox first stage but instead used two RD-181 engines along with other minor upgrades. The 200 series future became uncertain following the Russian invasion of Ukraine. Due to the first stage being produced in Ukraine and the engines in Russia, future production of the rocket was unable to be continued.[16] As a result Northrop Grumman entered into an agreement with Firefly Aerospace to build the first stage of the Antares 300 series. Northrop also contracted with SpaceX for 3 Falcon 9 launches.[18]

  1. ^ Cite error: The named reference ssau-launcheslv was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference fglobal20120430 was invoked but never defined (see the help page).
  3. ^ "Surplus Missile Motors: Sale Price Drives Potential Effects on DOD and Commercial Launch Providers" (PDF). U.S. Government Accountability Office. August 2017. p. 30. GAO-17-609. Archived (PDF) from the original on April 20, 2023.
  4. ^ Kyle, Ed (February 19, 2022). "Space Launch Report: Antares (Taurus II)". Archived from the original on April 6, 2022. Retrieved September 24, 2022.{{cite web}}: CS1 maint: unfit URL (link)
  5. ^ a b c d e f g h i j "Antares (100 Series)". SpaceFlight101. Retrieved May 5, 2016.
  6. ^ a b c d e f g h i j k "Antares 200 Series – Rockets". spaceflight101.com. Retrieved November 7, 2016.
  7. ^ a b "Antares Medium-class Launch Vehicle: Fact Sheet" (PDF). Orbital Sciences Corporation. 2013. Archived from the original (PDF) on June 3, 2013. Retrieved April 25, 2013.
  8. ^ "Antares - Fact Sheet" (PDF). Orbital ATK. 2017. FS007_06_OA_3695_021317. Archived from the original (PDF) on February 13, 2018. Retrieved February 12, 2018.
  9. ^ a b c d "Antares Medium-Class Launch Vehicle: Brochure" (PDF). Orbital Sciences Corporation. 2013. Archived from the original (PDF) on February 9, 2014. Retrieved April 25, 2012.
  10. ^ Cite error: The named reference spacenewsfirefly was invoked but never defined (see the help page).
  11. ^ "Antares". Yuzhnoye Design Bureau. Archived from the original on November 25, 2017. Retrieved November 19, 2017. Alt URL Archived November 29, 2020, at the Wayback Machine
  12. ^ Graham, William (April 21, 2013). "Antares conducts a flawless maiden launch". NASASpaceFlight.com. Retrieved April 22, 2013.
  13. ^ Cite error: The named reference nasapr20130421 was invoked but never defined (see the help page).
  14. ^ Beneski, Barron (December 12, 2011). "Orbital Selects "Antares" as Permanent Name for New Rocket Created by the Taurus II R&D Program" (Press release). Orbital Sciences Corporation.
  15. ^ Queally, James; Hennigan, W. J.; Raab, Lauren (October 28, 2014). "Rocket bound for space station blows up just after liftoff". Los Angeles Times. Retrieved November 8, 2014.
  16. ^ a b "Northrop Grumman and Firefly to partner on upgraded Antares". SpaceNews. August 8, 2022. Retrieved August 9, 2022.
  17. ^ Clark, Stephen. "Engine turbopump eyed in Antares launch failure – Spaceflight Now". Retrieved August 9, 2022.
  18. ^ Roulette, Joey (August 8, 2022). "Northrop taps rocket startup Firefly to replace Antares' Russian engines". Reuters. Retrieved August 9, 2022.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search