Properties of water

Water
The water molecule has this basic geometric structure
Ball-and-stick model of a water molecule
Ball-and-stick model of a water molecule
Space filling model of a water molecule
Space filling model of a water molecule
  Oxygen, O
  Hydrogen, H
A drop of water falling towards water in a glass
Names
IUPAC name
Water
Systematic IUPAC name
Oxidane
Other names
  • Hydrogen oxide
  • Hydrogen hydroxide (HH or HOH)
  • Hydroxylic acid
  • Dihydrogen monoxide (DHMO) (parody name[1])
  • Dihydrogen oxide
  • Hydric acid
  • Hydrohydroxic acid
  • Hydroxic acid
  • Hydroxoic acid
  • Hydrol[2]
  • μ-Oxidodihydrogen
  • κ1-Hydroxylhydrogen(0)
  • Aqua
  • Neutral liquid
Identifiers
3D model (JSmol)
3587155
ChEBI
ChEMBL
ChemSpider
DrugBank
EC Number
  • 231-791-2
117
KEGG
RTECS number
  • ZC0110000
UNII
  • InChI=1S/H2O/h1H2 checkY
    Key: XLYOFNOQVPJJNP-UHFFFAOYSA-N checkY
  • O
Properties
H
2
O
Molar mass 18.01528(33) g/mol
Appearance Almost colorless or white crystalline solid, almost colorless liquid, with a hint of blue, colorless gas[3]
Odor Odorless
Density
  • Liquid (1 atm, VSMOW):
  • 0.99984283(84) g/mL at 0 °C[4]
  • 0.99997495(84) g/mL at 3.983035(670) °C (temperature of maximum density, often 4 °C)[4]
  • 0.99704702(83) g/mL at 25 °C[4]
  • 0.96188791(96) g/mL at 95 °C[5]
  • Solid:
  • 0.9167 g/mL at 0 °C[6]
Melting point 0.00 °C (32.00 °F; 273.15 K) [b]
Boiling point 99.98 °C (211.96 °F; 373.13 K)[16][b]
Solubility Poorly soluble in haloalkanes, aliphatic and aromatic hydrocarbons, ethers.[7] Improved solubility in carboxylates, alcohols, ketones, amines. Miscible with methanol, ethanol, propanol, isopropanol, acetone, glycerol, 1,4-dioxane, tetrahydrofuran, sulfolane, acetaldehyde, dimethylformamide, dimethoxyethane, dimethyl sulfoxide, acetonitrile. Partially miscible with diethyl ether, methyl ethyl ketone, dichloromethane, ethyl acetate, bromine.
Vapor pressure 3.1690 kilopascals or 0.031276 atm at 25 °C[8]
Acidity (pKa) 13.995[9][10][a]
Basicity (pKb) 13.995
Conjugate acid Hydronium H3O+ (pKa = 0)
Conjugate base Hydroxide OH (pKb = 0)
Thermal conductivity 0.6065 W/(m·K)[13]
1.3330 (20 °C)[14]
Viscosity 0.890 mPa·s (0.890 cP)[15]
Structure
Hexagonal
C2v
Bent
1.8546 D[17]
Thermochemistry
75.385 ± 0.05 J/(mol·K)[16]
69.95 ± 0.03 J/(mol·K)[16]
−285.83 ± 0.04 kJ/mol[7][16]
−237.24 kJ/mol[7]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Drowning
Avalanche (as snow)
Water intoxication
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
0
0
Flash point Non-flammable
Safety data sheet (SDS) SDS
Related compounds
Other cations
Related solvents
Supplementary data page
Water (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Water (H2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound[19] and is described as the "universal solvent"[20] and the "solvent of life".[21] It is the most abundant substance on the surface of Earth[22] and the only common substance to exist as a solid, liquid, and gas on Earth's surface.[23] It is also the third most abundant molecule in the universe (behind molecular hydrogen and carbon monoxide).[22]

Water molecules form hydrogen bonds with each other and are strongly polar. This polarity allows it to dissociate ions in salts and bond to other polar substances such as alcohols and acids, thus dissolving them. Its hydrogen bonding causes its many unique properties, such as having a solid form less dense than its liquid form, a relatively high boiling point of 100 °C for its molar mass, and a high heat capacity.

Water is amphoteric, meaning that it can exhibit properties of an acid or a base, depending on the pH of the solution that it is in; it readily produces both H+
and OH
ions.[c] Related to its amphoteric character, it undergoes self-ionization. The product of the activities, or approximately, the concentrations of H+
and OH
is a constant, so their respective concentrations are inversely proportional to each other.[24]

  1. ^ "naming molecular compounds". www.iun.edu. Archived from the original on 24 September 2018. Retrieved 1 October 2018. Sometimes these compounds have generic or common names (e.g., H2O is "water") and they also have systematic names (e.g., H2O, dihydrogen monoxide).
  2. ^ "Definition of Hydrol". Merriam-Webster. Archived from the original on 13 August 2017. Retrieved 21 April 2019.
  3. ^ Cite error: The named reference Braun_1993_612 was invoked but never defined (see the help page).
  4. ^ a b c Tanaka, M; Girard, G; Davis, R; Peuto, A; Bignell, N (August 2001). "Recommended table for the density of water between 0 C and 40 C based on recent experimental reports". Metrologia. 38 (4): 301–309. doi:10.1088/0026-1394/38/4/3.
  5. ^ Lemmon, Eric W.; Bell, Ian H.; Huber, Marcia L.; McLinden, Mark O. "Thermophysical Properties of Fluid Systems". In Linstrom, P.J.; Mallard, W.G. (eds.). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology. doi:10.18434/T4D303. Archived from the original on 23 October 2023. Retrieved 17 October 2023.
  6. ^ Lide 2003, Properties of Ice and Supercooled Water in Section 6.
  7. ^ a b c Anatolievich, Kiper Ruslan. "Properties of substance: water". Archived from the original on 2014-06-02. Retrieved 2014-06-01.
  8. ^ Lide 2003, Vapor Pressure of Water From 0 to 370 °C in Sec. 6.
  9. ^ Lide 2003, Chapter 8: Dissociation Constants of Inorganic Acids and Bases.
  10. ^ Weingärtner et al. 2016, p. 13.
  11. ^ "What is the pKa of Water". University of California, Davis. 2015-08-09. Archived from the original on 2016-02-14. Retrieved 2016-04-09.
  12. ^ Silverstein, Todd P.; Heller, Stephen T. (17 April 2017). "pKa Values in the Undergraduate Curriculum: What Is the Real pKa of Water?". Journal of Chemical Education. 94 (6): 690–695. Bibcode:2017JChEd..94..690S. doi:10.1021/acs.jchemed.6b00623.
  13. ^ Ramires, Maria L. V.; Castro, Carlos A. Nieto de; Nagasaka, Yuchi; Nagashima, Akira; Assael, Marc J.; Wakeham, William A. (1995-05-01). "Standard Reference Data for the Thermal Conductivity of Water". Journal of Physical and Chemical Reference Data. 24 (3): 1377–1381. Bibcode:1995JPCRD..24.1377R. doi:10.1063/1.555963. ISSN 0047-2689.
  14. ^ Lide 2003, 8—Concentrative Properties of Aqueous Solutions: Density, Refractive Index, Freezing Point Depression, and Viscosity.
  15. ^ Lide 2003, 6.186.
  16. ^ a b c d Water in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD)
  17. ^ Lide 2003, 9—Dipole Moments.
  18. ^ GHS: PubChem 962 Archived 2023-07-28 at the Wayback Machine
  19. ^ Greenwood & Earnshaw 1997, p. 620.
  20. ^ "Water, the Universal Solvent". U.S. Department of the Interior. usgs.gov (website). United States of America: USGS. October 22, 2019. Archived from the original on December 1, 2021. Retrieved December 15, 2020.
  21. ^ Reece et al. 2013, p. 48.
  22. ^ a b Weingärtner et al. 2016, p. 2.
  23. ^ Reece et al. 2013, p. 44.
  24. ^ "Autoprotolysis constant". IUPAC Compendium of Chemical Terminology. IUPAC. 2009. doi:10.1351/goldbook.A00532. ISBN 978-0-9678550-9-7. Archived from the original on 2019-04-29. Retrieved 2018-08-09.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search