Symmetry group

A regular tetrahedron is invariant under twelve distinct rotations (if the identity transformation is included as a trivial rotation and reflections are excluded). These are illustrated here in the cycle graph format, along with the 180° edge (blue arrows) and 120° vertex (pink and orange arrows) rotations that permute the tetrahedron through the positions. The twelve rotations form the rotation (symmetry) group of the figure.

In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object X is G = Sym(X).

For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search