3-sphere

Stereographic projection of the hypersphere's parallels (red), meridians (blue) and hypermeridians (green). Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles: the curves that intersect ⟨0,0,0,1⟩ have infinite radius (= straight line). In this picture, the whole 3D space maps the surface of the hypersphere, whereas in the next picture the 3D space contained the shadow of the bulk hypersphere.
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres)

In mathematics, a 3-sphere, glome or hypersphere is a higher-dimensional analogue of a sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere (or 2-sphere, a two-dimensional surface), the boundary of a ball in four dimensions (a gongyl) is a 3-sphere (a 3-dimensional "surface"). Topologically, a 3-sphere is an example of a 3-manifold, and it is also an n-sphere.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search