Segregation (materials science)

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions,[1] whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science,[2] to the stabilization of colloidal suspensions.

Segregation can occur in various materials classes. In polycrystalline solids, segregation occurs at defects, such as dislocations, grain boundaries, stacking faults, or the interface between two phases. In liquid solutions, chemical gradients exist near second phases and surfaces due to combinations of chemical and electrical effects.

Segregation which occurs in well-equilibrated systems due to the instrinsic chemical properties of the system is termed equilibrium segregation. Segregation that occurs due to the processing history of the sample (but that would disappear at long times) is termed non-equilibrium segregation.

  1. ^ Lejcek, Pavel (2010). Grain boundary segregation in metals. Berlin: Springer-Verlag. ISBN 978-3-642-12504-1.
  2. ^ Shvindlerman, Günter Gottstein, Lasar S. (2010). Grain boundary migration in metals : thermodynamics, kinetics, applications (2nd ed.). Boca Raton: Taylor & Francis. ISBN 9781420054354.{{cite book}}: CS1 maint: multiple names: authors list (link)

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search