En mathématiques, un élément unipotent r d'un anneau unitaire R est un tel que r − 1 est un élément nilpotent ; en d'autres termes, (r − 1)n vaut zéro pour n assez grand.
En particulier, une matrice carrée M est une matrice unipotente si et seulement si son polynôme caractéristique P(t) est une puissance de t − 1. Ainsi, toutes les valeurs propres d'une matrice unipotente valent 1.
Le terme quasi-unipotent signifie qu'une certaine puissance de l'élément est unipotente. Par exemple, une matrice diagonalisable dont toutes les valeurs propres sont des racines de l'unité est quasi-unipotente.
Dans la théorie des groupes algébriques, un élément d'un groupe est unipotent s'il agit de manière unipotente dans une certaine représentation naturelle du groupe. Un groupe algébrique affine unipotent est alors un groupe dont tous les éléments sont unipotents.
© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search