Blockmodeling

Blockmodeling is a set or a coherent framework, that is used for analyzing social structure and also for setting procedure(s) for partitioning (clustering) social network's units (nodes, vertices, actors), based on specific patterns, which form a distinctive structure through interconnectivity.[1][2] It is primarily used in statistics, machine learning and network science.

As an empirical procedure, blockmodeling assumes that all the units in a specific network can be grouped together to such extent to which they are equivalent. Regarding equivalency, it can be structural, regular or generalized.[3] Using blockmodeling, a network can be analyzed using newly created blockmodels, which transforms large and complex network into a smaller and more comprehensible one. At the same time, the blockmodeling is used to operationalize social roles.

While some contend that the blockmodeling is just clustering methods, Bonacich and McConaghy state that "it is a theoretically grounded and algebraic approach to the analysis of the structure of relations". Blockmodeling's unique ability lies in the fact that it considers the structure not just as a set of direct relations, but also takes into account all other possible compound relations that are based on the direct ones.[4]

The principles of blockmodeling were first introduced by Francois Lorrain and Harrison C. White in 1971.[2] Blockmodeling is considered as "an important set of network analytic tools" as it deals with delineation of role structures (the well-defined places in social structures, also known as positions) and the discerning the fundamental structure of social networks.[5]: 2, 3  According to Batagelj, the primary "goal of blockmodeling is to reduce a large, potentially incoherent network to a smaller comprehensible structure that can be interpreted more readily".[6] Blockmodeling was at first used for analysis in sociometry and psychometrics, but has now spread also to other sciences.[7]

  1. ^ Patrick Doreian, Positional Analysis and Blockmodeling. Encyclopedia of Complexity and Systems Science. DOI: https://doi.org/10.1007/978-0-387-30440-3_412 Archived 2023-02-04 at the Wayback Machine.
  2. ^ a b Patrick Doreian, An Intuitive Introduction to Blockmodeling with Examples, BMS: Bulletin of Sociological Methodology / Bulletin de Méthodologie Sociologique, January, 1999, No. 61 (January, 1999), pp. 5–34.
  3. ^ Anuška Ferligoj: Blockmodeling, http://mrvar.fdv.uni-lj.si/sola/info4/nusa/doc/blockmodeling-2.pdf Archived 2021-08-12 at the Wayback Machine
  4. ^ Bonacich, Phillip; McConaghy, Maureen J. (1980). "The Algebra of Blockmodeling". Sociological Methodology. 11: 489–532. doi:10.2307/270873.
  5. ^ Doreian, Patrick; Batagelj, Vladimir; Ferligoj, Anuška (2005). Generalized Blockmodeling. Cambridge University Press. ISBN 0-521-84085-6.
  6. ^ Batagelj, Vladimir (1999). "Generalized Blockmodeling". Informatica. 23: 501–506.
  7. ^ "WEBER, M. (2007), "Introducing blockmodeling to input-output analysis". 16th International I-Ot Conf, Istanbul, Turkey". Archived from the original on 2021-08-23. Retrieved 2021-08-23.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search